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Bridging Text and Video: A Universal Multimodal
Transformer for Audio-Visual Scene-Aware Dialog

Zekang Li, Zongjia Li, Jinchao Zhang, Yang Feng, and Jie Zhou

Abstract—Audio-Visual Scene-Aware Dialog (AVSD) is a task
to generate responses when chatting about a given video, which
is organized as a track of the 8th Dialog System Technology
Challenge (DSTC8). There are two challenges in this task: 1)
making effective interaction among different modalities; 2) better
understanding dialogues and generating informative responses.
To tackle the challenges, we propose a universal multimodal
transformer and introduce the multi-task learning method to
learn joint representations among different modalities as well
as generate informative and fluent responses by leveraging the
pre-trained language model. Our method extends the natural
language generation pre-trained model to multimodal dialogue
generation task, which allows fine-tuning language models to
capture information across both visual and textual modalities.
Our system achieves the best performance in the objective
evaluation in both DSTC7-AVSD and DSTC8-AVSD dataset and
achieves an impressive 98.4% of the human performance based
on human ratings in the DSTC8-AVSD challenge.

Index Terms—Dialogue System, Multimodal, Natural Lan-
guage Processing, Video Understanding.

I. INTRODUCTION

RECENTLY, scene-aware dialogue generation has at-
tracted increasing attention in both industry and

academia due to its broad application. Zhou et al. [1] propose
a dataset for text-based conversations grounded in docu-
ments about movies. Urbanek et al. [2] build a large-scale
text adventure game platform, in which agents can act and
speak grounded on the scenes described in the text. Inspired
by human inherent multimodal understanding ability, Alamri
et al. [3] integrate multimodality to scene-aware dialogue and
propose the Audio-Visual Scene-Aware Dialog (AVSD) task.
These works aim to generate informative and fluent dialogue
responses grounding on the given scenes. The goal of the
Audio-Visual Scene-Aware Dialog task is to generate correct
and fluent responses by understanding all modalities (e.g.,
text, video and audio), which is a more challenging task than
image-based or text-grounded dialog tasks. Figure 1 shows an
example dialogue in DSTC8-AVSD dataset [3].
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Caption: A woman standing in a hallway takes off her slippers. She 
then climbs on a chair and starts doing something with the ceiling light.
Summary: A woman about 30 years old wearing a jean skirt and top is 
standing on a stool and fixing something in the hallway next to a door. 
The hallway has linoleum floors.
Q1: where is the video happening ? 
A1: it is happening inside in the hallway 
Q2: are there any people in the video ?
A2: yes there is one person in the video.

Q10: what is the person doing ?
A10: she is standing on a stool doing something with the ceiling light.

···

Fig. 1. A dialogue sampled from the DSTC8-AVSD dataset. For each
dialogue, there are video, audio, video caption, dialogue summary and 10
turns of conversations about the video.

There are two challenges in this task: 1) acquiring the
accurate representation of the video and making effective
interaction among different modalities; 2) better understanding
dialogues and generating responses. Some recent works focus
on the first challenge and explore a lot on multimodal represen-
tation. Hori et al. [4] introduce an LSTM-based encoder and
decoder with multimodal attention. Dat Tien Nguyen and Asri
[5] proposes a hierarchical recurrent encoder-decoder frame-
work based on a FiLM-based audio-visual feature extractor.
Pasunuru and Bansal [6] adopt a dual attention mechanism
to encode and align multiple modalities. The winning team
of the DSTC7-AVSD task [7] focuses on using hierarchical
attention to combine textual and visual modalities and em-
ploy the How2 dataset for pre-training. Moreover, MTN [8]
proposes multimodal transformer networks to encode video
and incorporate information from different modalities. These
existing methods mainly use independent encoders to sepa-
rately encode different modalities and then exploit the attention
mechanism to fuse the representations of different modalities,
in which the lower-level representation of a single modality
can not benefit from the information from the other modalities.
For example, some text information like video caption is useful
for the understanding of the video.
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Fig. 2. Our universal multimodal transformer architecture. We concatenate video-audio, caption, dialogue history, and response features to a long sequence.
For different types of input, we adopt different segments tokens (“[video]”, “[caption]”, “[user1]”, “[user2]”). We initialize our model with pre-trained GPT2
and introduce three tasks to fine-tune our model: Response Language Modeling (RLM), Video-Audio Sequence Modeling (VASM), Caption Language Modeling
(CLM).

The second challenge of this task, scene-aware dialogue
response generation, is also quite difficult. A dialogue agent
needs to fully understand the dialogue history given the scene
and capture relevant dependencies across dialogue turns to
generate informative and correct responses. Besides, it is costly
to build a large-scale scene-aware dialogue dataset, and the
generation model only trained on the dataset of this task has
limited performance. Adopting pre-trained language models
could improve the limited dialogue datasets by leveraging rich
linguistic dependencies learned from other available text data.

To tackle the aforementioned challenges, in this paper, we
design a universal multimodal transformer to encode different
modalities jointly and generate responses at the same time.
Inspired by Bert [9], GPT2 [10], and other pre-training works,
we use the self-supervised learning method and adopt the
multi-task learning (response language modeling, video-audio
sequence modeling, and caption language modeling) approach
to learn joint representations and generate informative and
fluent responses. Following the great success in many down-
stream dialogue generation tasks by leveraging large-scale pre-
trained language models, we extend the pre-trained GPT2
[10] model to tackle the challenges by combining both visual
and textual representations into a structured sequence and
fine-tune it to capture cross-modal dependencies and generate
informative responses.

Our contributions are as follows:

• We are the first to use pre-trained natural language
generation models in multimodal dialogue generation.

• We integrate multimodal features in one encoder and in-
troduce a multi-task learning method to learn better joint
representations and generate more informative responses.

• We achieve a state-of-the-art result on Audio-Visual
Scene-Aware Dialog (AVSD) Dataset with an impressive
98.4% of human performance, outperforming existing
methods and other teams in DSTC8-AVSD challenge by
a large margin.

II. RELATED WORK

Most work on the dialogue systems focuses on open-domain
dialogues or task-oriented dialogues. As in human-to-human
conversations, there is always background knowledge. Some
recent efforts develop dialogue systems that can generate
responses grounding on a document or structured knowledge
graph [11, 1, 12, 13, 14]. These systems can generate re-
sponses that are either more relevant to background knowledge
or make more correct interactions. There are also some works
incorporating multimodal information in question answering
and dialogues. In Visual QA [15, 16], the system’s goal is to
answer a given question about the content of an image. Visual
dialog [17] is a task to generate natural responses in a dialogue
based on the given image and the dialogue context. These
works consider text or images as the background knowledge,
whereas in Audio-Visual Scene-Aware Dialog the knowledge
is text, video, and audio.

It has been shown that pre-trained language models play an
important role in improving the performance of language gen-
eration tasks, such as dialogue systems and text summariza-
tion. Zhang et al. [18] propose a natural language generation
model based on BERT to make good use of the pre-trained
language model in the encoding and decoding process. Wolf
et al. [19] introduce transfer learning to generative data-driven
dialogue systems using Generative Pretrained Transformer
[10]. In our work, we extend this transfer learning method
to multimodal language generation tasks and propose a self-
supervised learning method for better video representation.

III. METHODOLOGY

In this section, we will describe our approaches to build the
multimodal dialogue system. We will first introduce the Audio
Visual Scene-Aware Dialog (AVSD) task. Then we will present
our multimodal dialogue system and the training methods.

A. Task Formulation
Our goal is to generate informative and fluent responses

integrating multimodal information, which consists of video,
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audio, video caption, and dialog context. Formally, let V
and A represent video and audio respectively. Considering
the similarity between the summary and the video caption,
we concatenate summary and caption as a whole caption
C = {c1, c2, . . . , cI}, which typically provides a linguistic
summary of the video and the whole dialogue. We use
U = {Q1,R1,Q2,R2, . . .QN ,RN , } to denote the N
turns of dialogue, where Qn represent the question n and
Rn = {r1n, r2n, . . . , rmn } represent the response n containing
m words. Therefore, the probability to generate the response
Rn for the given question Qn considering video V, audio A,
dialogue history U<n, and caption C can be computed as:

P (Rn|V,A,C,U<n,Qn; θ) =
m∏
j=1

P (rjn|V,A,C,U<n,Qn, r
<j
n ; θ) (1)

where r<jn represents the first j−1 words of the response Rn.

B. Model Overview

Our model architecture is illustrated in Figure 2, which is a
multilayer Transformer model based on the GPT2 architecture
[10]. More specifically, we employed a 12-layer decoder-only
transformer with multi-head self-attention.

C. Input Features

1) Text Input: For text features, we follow GPT2 [10] and
tokenize the input sentence into WordPieces [20].

2) Video and Audio Input: For the given video Vk, we
split the video to Tk segments with a sliding window of
l video frames. As shown in Figure 3, for each segment
St = {f1, f2, . . . , fl}, where fi represents one frame, we
use a pre-trained I3D-rgb and I3D-flow model [21] to extract
dv-dimensional video features Vrgb and Vflow. Considering
audio is synchronous with video, we select the audio from
the same segment and use a pretrained VGGish model [22] to
extract da-dimensional audio features as Avggish. We then
concatenate video I3D-rgb features, I3D-flow features, and
VGGish features:

VAt = [Vrgb,Vflow,Avggish],VAt ∈ R2dv+da (2)

Then video-audio features VA are fed into a fully-connected
layer (Video Embedder), as shown in Figure 2, and projected
to the same embedding space as text embedding.
As shown in Figure 2, to make our model have the ability
to distinguish among the different part of the input (video,
caption, speaker1, and speaker2) and make use of the order
of the sequence, the final representation for each word token
is obtained via summing up its word embedding (WE), po-
sitional encoding (PE) and segment embedding (SE). Note
that “[video]”, “[cap]”, “[user1]”, and “[user2]” are used
to represent the segment of video, captions and summary,
speaker1, and speaker2 respectively.

I3D

···
···

VG
G
ish ···

I3D-rgb
I3D-flow

VG
G
ish

Fig. 3. Video and audio feature extractors. For video, we adopt pre-trained
I3D-rgb and I3D-flow to extract rgb features and optical flow features. For
audio, we use pre-trained VGGish model.

D. Multi-task Learning

We introduce three tasks to fine-tune our model: Response
Language Modeling conditioned on video, audio, caption and
dialogue history, Video-Audio Sequence Modeling conditioned
on caption and dialogue, and Caption Language Modeling
conditioned on video and audio.

1) Response Language Modeling (RLM): The goal of this
task is to generate responses Rn = {r1n, r2n, . . . , rmn } based
on the video-audio features VA, caption C, dialogue history
U<n, and question Qn, by minimizing the negative log-
likelihood loss function:

LRLM (θ) = −E(VA,C,U,Q,R)∼D

log
m∏
j=0

P (rjn|VA,C,U<n,Qn, r
<j
n ) (3)

where r<jn represents the first j−1 words of the response Rn,
θ represents the trainable parameters, and (VA,C,U,Q) sets
are sampled from the whole training set D.

2) Video-Audio Sequence Modeling (VASM): This task is
to predict video-audio features given caption and dialogue
history. Unlike textual tokens which are represented as discrete
labels, video-audio features are high-dimensional and contin-
uous. Instead of clustering video-audio features to discrete
labels as Sun et al. [23] do, we adopt the video-audio feature
regression method following [24]. This task regresses the
Transformer output of video-audio feature ot to the next video-
audio feature VAt+1. In particular, we apply a fully-connected
layer to transform the output to a vector gθ(ot) of the same
dimensional as VAt+1. We train this task by minimizing L2
loss:

LV ASM (θ) =E(VA,C,U)∼D

1

T

T∑
t=1

‖gθ(ot)−VAt+1‖22 (4)

where ot = fθ(VA<t+1,C,U) and fθ represents the function
of our GPT2 model.
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TABLE I
OBJECTIVE EVALUATION RESULTS ON THE TEST SET PROVIDED BY THE ORGANIZERS IN DSTC7-AVSD CHALLENGE (6 GROUNDTRUTH RESPONSES ARE

AVAILABLE PER VIDEO).

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
Input: text-only

JMAN 0.644 0.488 0.383 0.302 0.238 0.518 0.891
Hierarchical Attention - - - 0.376 0.264 0.554 1.076
Our model (RLM) 0.747 0.627 0.527 0.445 0.287 0.594 1.261

Input: text + video
JMAN 0.667 0.521 0.413 0.334 0.239 0.533 0.941
Hierarchical Attention - - - 0.394 0.267 0.563 1.094
MSTN - - - 0.377 0.275 0.566 1.115
MTN - - - 0.392 0.269 0.559 1.066
Our model (RLM) 0.759 0.635 0.533 0.448 0.293 0.602 1.282

+ VASM 0.765 0.643 0.543 0.459 0.294 0.606 1.308
Input: text + video w/o caption / summary

Baseline - - - 0.309 0.215 0.487 0.746
DSTC7-AVSD Team 9 - - - 0.315 0.239 0.481 0.773
MSTN - - - 0.379 0.261 0.548 1.028
Our model (RLM) 0.694 0.570 0.476 0.402 0.254 0.544 1.052

+ VASM 0.677 0.556 0.462 0.389 0.250 0.533 1.004
+ CLM 0.670 0.537 0.438 0.362 0.254 0.535 1.022

TABLE II
OBJECTIVE AND SUBJECTIVE EVALUATION RESULTS ON THE TEST SET PROVIDED BY THE ORGANIZERS IN DSTC8-AVSD CHALLENGE (6

GROUNDTRUTH RESPONSES ARE AVAILABLE PER VIDEO). NOTE THAT OUR MODEL (+VASM) IS ADDITIONAL EXPERIMENT AFTER THE CHALLENGE, SO
THERE IS NO SUBJECTIVE EVALUATION FOR IT. HUMAN RATING FOR THE REFERENCE IS 4.000.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr Human rating
Input: text-only

Our model (RLM) 0.744 0.626 0.525 0.442 0.287 0.595 1.231 3.934
Input: text + video

JMAN 0.645 0.504 0.402 0.324 0.232 0.521 0.875 3.123
STSGR - - - 0.357 0.267 0.553 1.004 3.433
MSTN - - - 0.385 0.270 0.564 1.073 -
Our model (RLM) 0.739 0.624 0.528 0.447 0.284 0.592 1.226 3.895

+ VASM 0.746 0.626 0.528 0.445 0.286 0.598 1.240 -
Input: text + video w/o caption / summary

Baseline - - - 0.289 0.210 0.480 0.651 2.885
MSTN - - - 0.375 0.251 0.544 0.975 -
Our model (RLM) 0.677 0.556 0.462 0.387 0.249 0.544 1.022 -

+ VASM 0.669 0.550 0.457 0.385 0.246 0.540 0.988 -
+ CLM 0.661 0.533 0.437 0.364 0.242 0.533 0.991 -

3) Caption Language Modeling (CLM): Similar to Re-
sponse Language Modeling task, we train the model to gener-
ate caption C = {c1, c2, . . . , cI} based on the video-audio
feature VA by minimizing the negative loglikelihood loss
function:

LCLM (θ) = −E(VA,C)∼D log
I∏
i=0

P (ci|VA, c<i) (5)

where c<i represents the first i− 1 words of the caption C.

IV. EXPERIMENTS

A. Datasets

We use the Audio-Visual Scene-Aware Dialog (AVSD)
dataset [3] from DSTC7 and DSTC8. In this dataset, each
dialog has two participants, a questioner and an answerer.
Each dialogue consists of a sequence of questions and answers
about a given video. There is a video caption and a dialogue
summary for each video. The video caption is a description of
the given video. The Dialogue summary is a summarization
of the dialogue. We use the state-of-the-art video feature

extractor I3D model [21] pre-trained on YouTube videos and
the Kinetics dataset [25]. Specifically, we use the output from
the “Mixed 5c” layer of the I3D network, which is a 2048-
dimensional vector. For audio features, we adopt the famous
VGGish model [22] which outputs a 128-dimensional embed-
ding. There are 7,659 dialogues for training, 1787 dialogues
for validation, and 1710 dialogues for testing. In DSTC7 and
DSTC8, the training set and the validation set are the same,
while the testing sets are different. We evaluate our model on
both two datasets.

B. Baselines

We compare our model with several related baseline meth-
ods: the official baseline model, the DSTC7-AVSD winning
system, and some of the other DSTC8-AVSD submitted sys-
tems:

1) Baseline: The multimodal baseline provided by the
organizers, which combines all modalities with a projection
matrix [4].
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TABLE III
OBJECTIVE EVALUATION RESULTS ON THE TEST SET OF DSTC7-AVSD (6 GROUNDTRUTH RESPONSES ARE AVAILABLE PER VIDEO) IN WHICH

MAXIMUM HISTORY LENGTH (NUMBER OF DIALOGUE TURNS USED BY THE NETWORK) RANGES FROM 0 TO 9. BEST RESULT IN EACH METRIC IS
HIGHLIGHTED IN BOLD.

History Length BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
0 0.729 0.599 0.496 0.413 0.275 0.573 1.182
1 0.760 0.638 0.536 0.452 0.296 0.605 1.305
2 0.755 0.632 0.532 0.450 0.296 0.601 1.297
3 0.765 0.643 0.543 0.459 0.294 0.606 1.308
5 0.758 0.634 0.533 0.451 0.292 0.601 1.293
9 0.759 0.631 0.526 0.441 0.296 0.603 1.294

TABLE IV
OBJECTIVE EVALUATION RESULTS ON THE TEST SET OF DSTC7-AVSD (6 GROUNDTRUTH RESPONSES ARE AVAILABLE PER VIDEO) COMPARED

BETWEEN DIFFERENT DECODING METHODS. BEST RESULT IN EACH METRIC IS HIGHLIGHTED IN BOLD.

Decoding Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
Greedy Search 0.743 0.610 0.503 0.416 0.284 0.587 1.217

Nucleus Sampling 0.680 0.525 0.410 0.321 0.252 0.527 0.955
Beam Search 0.765 0.643 0.543 0.459 0.294 0.606 1.308

2) Hierarchical Attention: The hierarchical attention ap-
proach to combine textual and visual modalities. This is the
method that was used by the team ranked 1st in the DSTC7-
AVSD task.

3) MTN: The state-of-the-art system before the DSTC8-
AVSD Challenge, which proposes Multimodal Transformer
Networks (MTN) to encode videos and incorporate informa-
tion from different modalities [8].

4) JMAN: Multi-step joint-modality attention network
based on RNN, which performs a multi-step attention mecha-
nism and jointly considers both visual and textual representa-
tions [26].

5) MSTN: MSTN employs a transformer-based architecture
with an attention-based word embedding layer considering the
meaning of words at the generation stage [27].

6) STSGR: This work represents a video as two spatio-
temporal scene graphs, which encode graphs via graph at-
tention and perform high-level reasoning using multi-modal
transformers [28].

C. Metrics
1) Objective evaluation: We report the metrics that are

commonly used in the natural language generation tasks,
such as BLEU [29], METEOR [30], ROUGE-L [31], and
CIDEr [32]. These metrics are formulated to compute the word
overlap between the predicted responses and the ground-truth
responses. We evaluate our models using the toolkit provided
by the DSTC8-AVSD challenge organizers.

2) Subjective Evaluation: Subjective evaluations are essen-
tial for dialogue generation. The organizers evaluated some
systems based on crowd-sourced human ratings. The annota-
tors were asked to consider the correctness, naturalness, in-
formativeness, and appropriateness of the generated responses
and gave a score at five levels, from 1 to 5. The human-
generated reference responses’ rating is 4.000.

D. Experimental Settings
In our experiment, we initialize our model with the pre-

trained weights from the GPT2 base model [10, 33]. In the

training process, we use up to 3 turns of dialogue history. The
hidden size of the transformer blocks is 768, and the batch
size is 32. We use Adam optimizer with a learning rate of
6.25e-5. In the decoding process, we use beam search with a
beam size of 5, max length of 20, and a length penalty of 0.3.

For the Audio-Visual Scene-Aware Dialog task, there are
three different settings: text-only, text+video, and text+video
without caption. Text-only setting is equivalent to text knowl-
edge grounded dialogue generation task. Text+video setting is
a complete scene-aware dialogue generation task considering
both textual and visual information. Text+video without cap-
tion mainly focus on the situation where there is only video
but no video caption, which is typical in the real world.

E. Experimental Results

In this section, we report the experimental results under
three different settings: text-only, text + video, and text + video
without caption/summary.

1) Text-only: We use only text input, which comprises
dialogue history, video caption, and dialogue summary. We
train the model using only the Response Language Modeling
(RLM) task. These results are reported in the “Our model
(RLM)” row of “text-only” setting in Table I and Table II.

As shown in Table I, compared to Hierarchical Attention
(which was used in the winning system of the DSTC7-AVSD
challenge) and JMAN, our model gets better performance on
all metrics on the DSTC7-AVSD dataset. In detail, our model
improves BLEU-4 by 0.069 and CIDEr by 0.185. Additionally,
Table II also shows the human evaluation rating in the DSTC8-
AVSD track. During the human evaluation, the evaluators are
asked to rate even the groundtruth references, which are scored
4.000. Our model for this task scores 3.934, which is the
highest human rating among all DSTC8 submissions. From
the human rating perspective, the results of our model are
very close to human dialogue.

2) Text + video: We use text input and video-audio input,
and we train the model with the Response Language Modeling
(RLM) task and the Video-Audio Sequence Modeling (VASM)
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TABLE V
CASE STUDY OF RESPONSE GENERATION. TEXT-ONLY INFORMATION IS ENOUGH TO PROVIDE A GOOD RESPONSE FOR THE FIRST CASE, BUT THAT

INCLUDING VIDEO IMPROVES THE PERFORMANCE FOR THE OTHER TWO CASES.

Video caption A man with glasses wearing a green t-shirt is playing with a device on a counter top in a kitchen.
Dialogue summary Male is standing at an oven, flipping and tapping a spatula. They then go and close the fridge door.

Dialogue history
[User1]: So, this person is standing in that spot for the entire length of time, fiddling with something?
[User2]: He stands there and flips the item around, and taps it, then at the very end, he goes and closes the fridge door.
[User1]: Is this person wearing glasses?

Baseline [User2]: No, they are not wearing glasses.
Our model (text-only) [User2]: Yes, he is wearing glasses.

Our model (text + video) [User2]: Yes, he is wearing glasses.
Ground-truth [User2]: Yes, he is wearing glasses.

Video caption A person stands in a bedroom holding a folded sheet. They are at a panel of switches. They turn on the light.
Dialogue summary A man stands with a folded sheet in one hand, and a panel of switches on the wall. He flips one light switch on.

Dialogue history
[User1]: Does the person hold it during the whole video?
[User2]: Yes, while standing at the panel of switches, he is holding the folded sheet the entire time.
[User1]: What does the man touch with his left hand on the wall?

Baseline [User2]: He doesn’t touch anything.
Our model (text-only) [User2]: He touches with his right hand on the wall.

Our model (text + video) [User2]: He flips a light switch on.
Ground-truth [User2]: He is touching a panel of switches and he turns on the light.

Video caption A man is laying in bed watching tv. He mumbles something and then gets up and begins vacuuming the room.
Dialogue summary A man is lying on a bed. He gets up and uses a vacuum to sweep the room.

Dialogue history
[User1]: In the door way to the next room, there is an object. What is that ?
[User2]: He went to the doorway for a vacuum.
[User1]: When he gets up, does he have anything in his hands?

Baseline [User2]: No he is not talking.
Our model (text-only) [User2]: He has a vacuum in his hand.

Our model (text + video) [User2]: No, he has nothing in his hands.
Ground-truth [User2]: He had nothing in his hands when he got up.

task described in Section III.D. These results are reported in
the “Our model (RLM) + VASM” row of “text + video” setting
in Table I and Table II.

As we can see in Table I, compared to MTN (the former
state-of-the-art model for this task), our model also achieves
a huge improvement. In particular, our model improved the
BLEU-4 score by 0.056, and CIDEr by 0.216. Compared to
the text-only task, our models achieve better results on the
objective evaluations, which indicates that our method for
video understanding is effective. We adopt multi-task learn-
ing as we described before. Video-Audio sequence modeling
(VASM) task improves the score of BLEU-4 by 0.011 and
CIDEr by 0.026. In the DSTC8 results shown in Table II, this
method improves upon CIDEr score by 0.014, which shows
the method is effective. Note that our model (+VASM) is
an additional experiment after the challenge, so there is no
subjective evaluation for it. The human performance of “text
+ video” is theoretically better than that of “text only” through
many case studies.

3) Text + video w/o caption/summary: In this setting,
there are two methods: 1) In both training and testing, use
neither the caption nor the dialogue summary. Train the model
with Response Language Modeling (RLM) and Video-Audio
Sequence Modeling (VASM). The results are reported in the
”Our model (RLM) + VASM” row of “text + video w/o caption
and summary” setting in Table I and Table II. 2) In training,
use captions and summary and train the model with the three
tasks described in Section III.D. When testing, first generate
video captions and summary based on the given video-audio
input (recaption), and then generate responses using video-

audio input, generated caption, and dialogue history. The
results are reported in the “Our model (RLM) + VASM +
CLM” row of “text + video w/o caption and summary” setting
in Table I and Table II.

This setting is most similar to the real world scene-aware
dialogue: we only have video-audio information and dialogue
history. Therefore, this task is more challenging. As shown in
Table I, we see lower performance than the text + video task,
as expected, but it is gratifying that our model still performed
relatively well. We outperform the DSTC7-AVSD Team 9,
who got the highest performance in this task, by a large
margin. In this task, we also tried using the multi-task learning
method including video-audio sequence modeling (VASM)
and caption language modeling (CLM), but this resulted in
lower performance on almost all metrics. We will discuss this
phenomenon in the next section.

F. Analysis and Discussion

1) Training Method Analysis: As we introduced in the
experimental results, after we adopt the visual feature regres-
sion, our model gets better performance in the text + video
task, but gets lower performance in the text + video w/o
caption/summary task. We consider the reason is that it is
difficult to rebuild the masked video feature only using the
dialogue history without the captions and summary. Compared
to rebuilding text from adjacent context, we think our model
doesn’t have a very strong ability in extracting information
from videos. Therefore, the method doesn’t perform very well
in the text + video w/o caption/summary setting.
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For the poor performance of CLM, we think the reason may
be similar: the limited ability in extracting video information
of our model limited the performance for inferring caption
from the video. So we think future work can focus more on
video comprehension to get better basic video features.

2) History Length: We experiment with our model in text +
video settings with Video-Audio Sequence Modeling (VASM)
loss to explore the influence of dialogue history length. As
shown in Table III, our model generally performs best when
the maximum dialogue history length is 3.

3) Decoding Methods: To find an effective decoding
method for multimodal dialogue generation, we try various
decoding methods, including greedy search, beam search, and
nucleus sampling [34], which samples text from the dynamic
nucleus of the probability distribution and is often used to
generate diverse text. As shown in Figure IV, decoding with
beam search gets the best results on all objective metrics
among these three decoding methods. We consider that in
Audio-Visual Scene-Aware Dialog, grounding on video and
caption, responses are relatively more definite than that in
open-domain dialogues. Therefore, it is better to use beam
search when decoding in this task.

G. Case Study

Table V compares the responses generated by the baseline
model, our model (text-only), and our model (text + video).
Compared to the baseline model, our model can generate more
informative responses. As shown in case 1, for our text-only
model, it performs well when the information can be found in
the caption/summary. However, as shown in case 2 and case
3, when it comes to asking about specific information from
the video that is not present in the captions or summary, our
text-only model does not perform well. In these cases, our text
+ video model can refer to the video, find related information,
and generate correct responses.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a universal multimodal dialogue
generation model based on a pre-trained language model for
Audio-Visual Scene-Aware Dialog. We also introduce three
tasks to fine-tune our model: Response Language Modeling,
Video-Audio Sequence Modeling, Caption Language Model-
ing. Through these tasks, the model can learn more accurate
joint representation across multiple modalities and generate
more informative responses. Our system achieves the best
performance in the objective evaluation in both DSTC7-AVSD
and DSTC8-AVSD dataset and achieves an impressive 98.4%
of the human performance based on human ratings in the
DSTC8-AVSD challenge. In the future, we plan to use more
video features, such as ResNet features, and explore more
training tasks to improve the joint understanding of video and
text. Also, we hope to extend these methods to other tasks,
such as video captioning, image captioning, and visual dialog.
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