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Abstract. We propose a novel metric for machine translation evaluation
based on neural networks. In the training phrase, we maximize the dis-
tance between the similarity scores of high and low-quality hypotheses.
Then, the trained neural network is used to evaluate the new hypothe-
ses in the testing phase. The proposed metric can efficiently incorpo-
rate lexical and syntactic metrics as features in the network and thus
is able to capture different levels of linguistic information. Experiments
on WMT-14 show state-of-the-art performance is achieved in two out
of five language pairs on the system-level and one on the segment-level.
Comparative results are also achieved in the remaining language pairs.
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1 Introduction

With the development of machine translation (MT), MT evaluation (MTE) has
received increasing attention. Traditional lexical-based metrics such as BLEU
[8], Meteor [3], and TERp [11] take n-grams, synonyms, stems, word order, and
phrases into account. However, metrics based on lexical and syntactic informa-
tion are insufficient to evaluate the quality of the hypotheses, due to mismatch
errors caused by limited synonyms and references.

Recently, semantic-based metrics have become more feasible with the help
of deep learning. This paper presents an effective metric based on neural net-
works, i.e. Bidirectional Long Short Term Memory (Bi-LSTM) network [7,10] for
MTE. To capture the inner connection between hypotheses and references, we also
explore the effect of an enhanced Bidirectional Combined LSTM (BiC-LSTM)

c© Springer International Publishing AG 2016
C.-Y. Lin et al. (Eds.): NLPCC-ICCPOL 2016, LNAI 10102, pp. 153–161, 2016.
DOI: 10.1007/978-3-319-50496-4 13



154 Q. Ma et al.

network, which takes the concatenation of the hypothesis and the reference as the
input, rather than feeding them separately into the network as Bi-LSTM does.

Generally, the goal of the framework is to predict quality scores of hypotheses,
which requires references and hypotheses together with quality scores as training
examples. However, the difficulty of obtaining hypotheses with quality scores
leads to the insufficiency of training examples. For instance, ReVal [6] devotes
extra effort to compute quality scores of hypotheses, producing less than 15
thousand training examples from the human judgement file of WMT-13 [1], and
subsequently requires extra resources to enlarge the training set. As the amount
of training examples is crucial to network performance, we design a new objective
during the training process, which maximizes the distance between two similarity
scores: one between the reference ref and a high-quality hypothesis posh, and
the other one between ref and a low-quality one negh. Thus, two hypotheses,
as well as the reference comprise a training example, which allows us to extract
adequate training examples from WMT human judgements. Furthermore, for
testing, the network takes only one hypothesis and one reference as an input,
then outputs an evaluation score of the hypothesis. Compared with Guzmán
et al. (2015), our metric significantly reduces complexity in this respect, as we
can evaluate with a single hypothesis, while they require a pairwise setting.
Experiments on WMT-14 show that state-of-the-art performance is achieved in
two out of five language pairs on the system-level and one on the segment-level,
comparative results are obtained for remaining language pairs.

2 Learning Task

The goal of the training process in our neural network is to maximize the distance
of the similarity score between ref and posh, and the other one between ref
and negh. In the testing process, we evaluate the quality of hyp given ref by
computing the similarity score between them.

Thus, the input of our neural network is a tuple, marked as (ref, posh, negh).
The loss function of the neural network is formulated as follows:

Jθ = −
∑

n

max (0 , simP − simN ) (1)

where simP is the similarity score between ref and posh, and simN is that
between ref and negh. A more detailed computation is illustrated below.

3 MaxSD Model: Maximizing Similarity Distance Model

3.1 MaxSD Model

In order to learn the similarity scores, simP and simN , we build a maxSD
model. We explore two versions of MaxSD model, the performance of two LSMT
networks, namely Bi-LSTM and BiC-LSTM. As showed in Fig. 1, we first obtain
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Fig. 1. The overall architecture of the maxSD model. Bi(C)-LSTM means either Bi-
LSTM or BiC-LSTM network. Bi-LSTM network takes the left side of ‘/’ as input,
while BiC-LSTM the right one. The Bi-LSTM or BiC-LSTM network produces the
representation of each input, which then are used to compute simPn and simNn.
simP and simN are computed by incorporating 5 metric scores, namely spr and snr

respectively. The objective of the architecture is to maximize the distance between
simP and simN are.

the continuous space representations of ref , posh, and negh through the Bi-
LSTM and BiC-LSTM networks, respectively. Then, the representations are fed
into a feed-forward neural network as inputs to obtain neural network(NN)-based
similarity scores, which are computed as below:

simPn = σ(V · σ(W[refr , poshr ] + b)) (2)

simNn = σ(V · σ(W[refr ,neghr ] + b)) (3)

where poshr denotes the representation of posh, and neghr of negh. simPn
refers to the NN-based similarity score of posh, while simNn of negh given
refr. simPn and simNn share the same parameter weights W, V and the bias
term b.

Incorporating Other Metrics. Next, we further optimize our model by incor-
porating lexical and syntactic metrics as features (in terms of metric scores),
namely BLEU, NIST, METEOR, TERp and DPMF [13]. The concateanation
of these 5 metric scores and the NN-based similarity scores are fed into a feed-
forward layer, whose output shows the final similarity scores, simP and simN
(mentioned in formula (1)).

simP = σ(Ws[simPn, spr ] + bs) (4)

simN = σ(Ws[simNn, snr ] + bs) (5)

where Ws is the parameter weight and bs is a bias term. snr refers to the
concatenated 5 metric scores of neg, while spr that of pos.
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The Testing Phase. During the testing phase, given a hypothesis hyp and a
corresponding reference ref , the similarity score between them is computed as
follows.

Firstly, the NN-based similarity score:

sim(ref , hyp) = σ(V · σ(W[refr , hypr ] + b)) (6)

where refr denotes the representation of ref , and hypr of hyp. W and V are
parameter weights, and b is the bias term. All W, V and b are the same with
that in the training phase. Then, the final similarity score

sim = σ(Ws[sim(ref , hyp), sr ] + bs) (7)

where Ws, bs are the same with that in the training phase. sr refers to the
concatenated 5 metric scores of hyp given ref .

3.2 Bi-LSTM and BiC-LSTM Networks

We use Bi-LSTM and BiC-LSTM networks separately to produce the continuous
space representations of ref , posh and negh, which are denoted as refr, poshr

and neghr.

Bi-LSTM Network. Bi-LSTM networks have been employed to substantially
improve performance in several NLP tasks. As illustrated in Fig. 1, Bi-LSTM
network consists of two parallel layers, a forward and a backward layer, propa-
gating in two directions. These two layers enable the network to capture both
past and future features for a given timestep. The two representation sequences
produced by each layer are concatenated at each timestep, followed by mean
pooling which outputs the representation of the sentence.

Fig. 2. The Bi-LSTM network. The circles marked from 1 to m consist of a sentence,
whose representation is trained by the Bi-LSTM network.
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Fig. 3. The BiC-LSTM network. s1 denotes a sentence with length of m, while s2
the other with that of n. s1 and s2 are concatenated to go through the BiC-LSTM
network, producing the representation of the second sentence s2, which contains the
inner connection between s1 and s2.

BiC-LSTM Network. In order to capture inner connection between two sen-
tences, we further propose an enhanced BiC-LSTM network (as illustrated in
Fig. 2), which takes the concatenation of the two sentences as input. The output
is the representation of the second sentence. For instance, if the input of the
forward layer is the concatenation of hyp and ref , denoted by [hyp, ref ], and
that of the backward layer is the concatenation of reversals of both hyp and ref ,
then the network produces the representation of ref (Fig. 3).

4 Experiments and Results

4.1 Datasets

Experiments are conducted on the WMT metric shared task. Each training
example is a tuple (ref, posh, negh), extracted from the human judgement file
of WMT-13, of which each line contains 5 human ranks of 5 randomly chosen
hypotheses of a specific segment.

For duplicated tuples, we only retain one of them. There are also two tuples
with opposite positions of posh and negh due to the inconsistent ranks between
two annotators [2], in which case we remove the tuple appearing less often.
Hence, we clean the training with respect to inconsistency and redundance. In
all, we obtain 285908 tuples for training. Evaluation is conducted on WMT-14
for other languages into English.

4.2 Setups

Sentences with lengths exceeding 100 words are filtered out. The 300-dimensional
glove word vectors [9] are used as the word embedding. The parameter weights
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are initialized by sampling from a normal distribution. We train for 10 epoches
using adadelta. Our mini-batch size is 16, and dropout is used as suggested by
[14]. The average of segment-level scores is the system-level score.

4.3 Results

We present two versions of our metric, namely maxSD-1 and maxSD-2 based
on Bi-LSTM and BiC-LSTM networks respectively. We compare our metric
with the best two in WMT-14, DISCOTK-PARTY-TUNED and BEER [12] on
segment-level, and DISCOTK-PARTY-TUNED and LAYERED [4] on system-
level respectively. Additionally, the other incorporated metrics are also listed
in Tables 1 and 2 for comparison. Scores in bold indicate best scores overall
and those in bold italic show best scores achieved by our metric. Results in
Tables 1 and 2 show that two versions of our metric outperform all other metrics,
except DISCOTK-PARTY-TUNED, in all five directions both at the segment-
and system-level. And our metrics are slightly behind the top-performing met-
ric DISCOTK-PARTY-TUNED, which combines 17 different metrics requiring
external resources and tuning efforts. However, for ‘hi-en’, we yield better results
than DISCOTK-PARTY-TUNED, achieving the state-of-the-art results, with
Kendall tau of 0.444 on the segment level and Pearson correlation of 0.979 on
the system level. It is also worthy noting that maxSD-2 achieves the best perfor-
mance in two (‘hi-en’ and ‘fr-en’) out of five directions at the system-level, and
maxSD-1 the best in one direction at the segment-level. One interesting finding is
that the enhanced maxSD-2 does not outperform maxSD-1. We suspect that the
long length of the concatenated sentence affects the performance of BiC-LSTM
network. As recommended by [5], significance tests for differences in dependent
correlation with human assessment were carried out for all competing metrics.
Results of significance tests are shown in Fig. 4.

Table 1. Segment-level Kendall’s tau correlations on WMT-14.

Metrics cs-en de-en fr-en ru-en hi-en PAvg

BLEU .218 .266 .376 .263 .299 .285

NIST .231 .295 .392 .285 .342 .309

TERp-A .293 .335 .389 .307 .407 .346

METEOR .282 .334 .406 .333 .407 .355

DPMF .283 .332 .404 .324 .426 .354

maxSD-1 .312 .353 .429 .342 .444 .376

maxSD-2 .310 .353 .431 .342 .440 .375

DISCOTK-PARTY-TUNED .328 .380 .433 .355 .434 .386

BEER .284 .337 .417 .333 .438 .362
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Table 2. System-level correlations on WMT-14.

Metrics cs-en de-en fr-en ru-en hi-en Average

BLEU .963 .830 .961 .784 .928 .893

NIST .949 .803 .964 .796 .667 .836

TERp-A .863 .909 .976 .815 .438 .800

METEOR .980 .927 .975 .807 .457 .829

DPMF .999 .920 .967 .832 .882 .920

maxSD-1 .945 .920 .977 .827 .978 .930

maxSD-2 .948 .919 .977 .825 .979 .930

DISCOTK-PARTY-TUNED .975 .943 .977 .870 .956 .944

LAYERED .941 .893 .973 .854 .976 .927
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Fig. 4. Significance test results for differences in dependent correlation with human
judgement (Williams test) for all competing pairs of metrics. A green cell denotes a
significant win for the metric in a given row over the metric in a given column at
p < 0.05.“PDF” in the figure corresponds to “DPMF” mentioned above. (Color figure
online)
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5 Conclusion

Our proposed metric based on neural networks effectively achieves the state-of-
the-art performance in two out of five language pairs on system-level and one on
segment-level, and achieve comparative results for the remaining language pairs.
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