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Abstract
Cross-lingual induction aims to acquire for one lan-
guage some linguistic structures resorting to an-
notations from another language. It works well
for simple structured predication problems such
as part-of-speech tagging and dependency parsing,
but lacks of significant progress for more compli-
cated problems such as constituency parsing and
deep semantic parsing, mainly due to the structural
non-isomorphism between languages. We pro-
pose a decomposed projection strategy for cross-
lingual induction, where cross-lingual projection
is performed in unit of fundamental decisions of
the structured predication. Compared with the
structured projection that projects the complete
structures, decomposed projection achieves bet-
ter adaptation of non-isomorphism between lan-
guages and efficiently acquires the structured in-
formation across languages, thus leading to bet-
ter performance. For joint cross-lingual induction
of constituency and dependency grammars, decom-
posed cross-lingual induction achieves very signif-
icant improvement in both constituency and depen-
dency grammar induction.

1 Introduction
For parsing of resource-rich languages, supervised learning
on manual treebanks achieves the state-of-the-art [Collins,
1999; McDonald et al., 2005; Petrov et al., 2006; Koo and
Collins, 2010]. Unsupervised methods utilizing raw text
achieve progress [Klein and Manning, 2004; Bod, 2006;
Headden III et al., 2009; Spitkovsky et al., 2013], but the per-
formance is still far from applicable. Compared with unsuper-
vised methods, cross-lingual induction usually achieves bet-
ter performance, especially in structurally simple problems
such as part-of-speech tagging and dependency parsing [Hwa
et al., 2005; Ganchev et al., 2009; Smith and Eisner, 2009;
McDonald et al., 2011]. However, there is no significant
progress in cross-lingual induction for more complicated
tasks such as constituency parsing and semantic parsing.

For complicated syntactic or semantic paradigms, struc-
tured projection based on direct correspondence assumption
[Hwa et al., 2005] is hard to achieve promising performance

due to the structural complicity and non-isomorphism be-
tween languages. However, the success in bilingual parsing
[Burkett and Klein, 2008; Huang et al., 2009] gives us the
inspiration that, appropriately leveraging rather than strictly
obeying the inner isomorphism between two languages may
be critical to the successful cross-lingual induction of compli-
cated structures. Structural projection, which directly project
linguistic structures from one language to another, gives a
strong assumption of isomorphism between the source and
the target languages. The structural non-isomorphism be-
tween languages makes it hard to apply structural projection
to the cross-lingual induction of complicated linguistic struc-
tures.

Most syntactic or semantic parsing models factorize the
parsing procedure into a set of fundamental decisions. For
example, a transition-based parser performs a series of tran-
sition operations to find a tree structure [Nivre and Scholz,
2004; Sagae and Lavie, 2005]. Using the fundamental de-
cision as the unit of cross-lingual induction probably leads
to better performance for cross-lingual induction. In this pa-
per we design a more effective, decomposed projection strat-
egy for joint cross-lingual induction of constituency and de-
pendency grammars. We remodel the constituency parsing
as a variant of transition-based parsing, where a transition
operation determines the behavior of two neighbor phrase
structures, including whether two neighbors could be merged,
what non-terminal should they be merged as, and which kid
will be the head. Since each decision contains the determina-
tion of the head kid, such model performs dependency pars-
ing simultaneously. After the remodeling of the parsing pro-
cedure, a novel cross-lingual extraction algorithm is designed
in order to acquire the training instances of transition deci-
sions. This manner reduces the isomorphism assumption in
cross-lingual induction, while guaranteeing the efficient ac-
quirement of structural information necessary for structural
prediction.

We experiment on joint cross-lingual induction of con-
stituency and dependency grammars from English to Chinese.
We first verify the effectiveness of the transition-based variant
model for constituency parsing. On WSJ treebank, this model
achieves accuracy comparable to the classic transition-based
model. We use FBIS Chinese-English dataset as the bilingual
corpus for cross-lingual induction. The joint constituency
and dependency grammar induced by the decomposed strat-
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Figure 1: The flowchart of the overall procedure for the de-
composed cross-lingual induction.

egy achieves promising accuracy on constituency and depen-
dency parsing, significantly outperforming previous work on
cross-lingual or unsupervised grammar induction. Although
it is not fair to compare with unsupervised models that utilize
only raw text, cross-lingual induction is a more effective strat-
egy to build an initial model if the resource-scarce language
has bilingual corpus parallel with a resource-rich language.
In future work, we will extend this approach to other compli-
cated NLP problems such as deep semantic analysis.

2 Remodeling Constituency&Dependency
Parsing

We factorize the joint constituency and dependency parsing
into a set of decisions of the most probable transition oper-
ation between two neighbor constituencies. A transition op-
eration, denoted as a tuple T = (λ, α, β), indicating three
aspects of decisions, whether two neighbors could be merged
(λ ∈ {reduce, separate}), what non-terminal should they
be merged as (α ∈ NT, the set of non-terminals), and which
kid will be the head (β ∈ {left, right}). The first two as-
pects correspond to the decisions for constituency parsing,
while the last one for dependency parsing. Note that α and β
are undefined (denoted as ∅) when λ equals separate.

Therefore, a transition operation (λ, α, β) can be divided
into a constituency transition operation (λ, α) operation and
a dependency transition operation (λ, β). There are |NT| +
1 constituency transition operations, (reduce, α) where α
is enumerated in NT, and (separate, ∅). For dependency
transition there are three possible operations, (reduce, left),
(reduce, right), and (separate, ∅). The probability of a
transition operation is the multiplication of the probabilities
of the corresponding two component transition operations:

p(T |S, Cc, Cd) = p(λ, α, β|S, Cc, Cd)

= p(λ, α|S, Cc)× p(λ, β|S, Cd)
(1)

Here, S denotes the states in the transition-based parsing pro-
cedure, Cc and Cd denote the constituency and dependency
classifiers. This parsing model could be seen as a variant
of the transition-based method where the transition opera-
tion is determined by two component classifiers. The parser
searches for the most probable parsing tree according to the
formula (where the conditions for probabilities are omitted

Algorithm 1 K-beam transition-based parsing.
1: Input: sentence: x, beam size: k, classifiers: Cc and Cd
2: insert INITSTATE(x) into queue
3: for i← 1 .. 2|x| − 1 do . 2|x| − 1 iterations
4: buf ← Ø
5: for S ∈ queue do . for each state S
6: for T ∈ GETACTIONS(S) do
7: insert NEXTSTATE(S, T ) into buf

8: queue← k best states in buf

9: Output: the tree derived from the best state in queue

for simplicity):

y(x) = arg max
y

( ∑
D,s.t.D(x)=y

∏
T ∈D

p(T )

)

≈ arg max
y

(
max

D,s.t.D(x)=y

∏
T ∈D

p(T )

) (2)

Here D is a derivation, that is, a sequence of transition oper-
ations lead to the candidate tree y. A summation operation is
needed to accumulate across all the derivations corresponding
to the same tree, but it can be estimated by a max operator to
facilitate approximate decoding.

Following previous work on transition-based parsing, a bi-
narization method is adopted in the treebank processing and
the parsing procedure. The binarization is done in a strict
order from the head to the right and then to the left. Fur-
thermore, we shrink each single-branch path into one node,
in order to generate strict binary trees. The determination
of transition operations, therefore, needs only consider two
neighbor constituencies. It is easy to extract the normal trees
from the binary trees with the asterisks as indications.

Training instances for constituency and dependency transi-
tions are extracted automatically from the binarized treebank,
and then used to train the classifiers. Both classifiers share the
same set of feature templates, considering the constituency
and lexical information of the two neighbor phrase structures
and their context, as shown in Table 1. The feature templates
considering constituency information are adopted from clas-
sic transition-based methods [Sagae and Lavie, 2005], and
those considering dependency information are adopted from
first-order maximum spanning tree methods [McDonald et
al., 2005].

The variant transition-based model is also different from
the traditional models in decoding. In the initial state be-
fore decoding procedure, each word and its part-of-speech
tag form a minimal subtree. The most intuitive decoding
strategy is to scan the subtree sequence from left to right,
and perform transition operations to each pair of adjacent
subtrees according to predication of the classifiers. If pred-
icated as (separate, ∅, ∅), no reduction operation will be
conducted on the two subtrees and the current considering
window moves forward. Otherwise, the two subtrees will be
reduced into a larger subtree according to the predicated op-
eration. This procedure continues iteration by iteration until
a complete tree structure obtained. As described by previous
work, it is hard for such a deterministic parsing algorithm to
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Type Feature Templates
NT-related lhww ◦ lhwt ◦ rhww ◦ rhwt lhww ◦ lhwt ◦ rhww lhww ◦ lhwt ◦ rhwt lhww ◦ rhww ◦ rhwt

lhwt ◦ rhww ◦ rhwt lhww ◦ rhww lhwt ◦ rhwt lsym ◦ lhww ◦ rsym ◦ rhww
lsym ◦ lhww ◦ rsym lsym ◦ lhww ◦ rhww lsym ◦ rsym ◦ rhww lhww ◦ rsym ◦ rhww
lsym ◦ lhwt ◦ rsym ◦ rhwt lsym ◦ lhwt ◦ rsym lsym ◦ lhwt ◦ rhwt lsym ◦ rsym ◦ rhwt
lhwt ◦ rsym ◦ rhwt lsym ◦ rsym elw ◦ elt ◦ erw ◦ ert elw ◦ elt ◦ erw
elw ◦ elt ◦ ert elw ◦ erw ◦ ert elt ◦ erw ◦ ert lsym ◦ elw ◦ rsym ◦ erw
lsym ◦ elw ◦ rsym lsym ◦ rsym ◦ erw lsym ◦ elt ◦ rsym ◦ ert lsym ◦ elt ◦ rsym
lsym ◦ rsym ◦ ert

Lexical pw pt pw ◦ pt cw
ct cw ◦ ct pw ◦ pt ◦ cw ◦ ct pw ◦ pt ◦ cw
pw ◦ pt ◦ ct pw ◦ cw ◦ ct pt ◦ cw ◦ ct pw ◦ cw
pt ◦ ct pw ◦ ct pt ◦ cw pt ◦ pt-1 ◦ ct ◦ ct-1
pt ◦ pt+1 ◦ ct ◦ ct+1 pt ◦ pt+1 ◦ ct ◦ ct-1 pt ◦ pt-1 ◦ ct ◦ ct+1 pt ◦ pt-1 ◦ ct-1
pt ◦ pt-1 ◦ ct+1 pt ◦ pt+1 ◦ ct-1 pt ◦ pt+1 ◦ ct+1 pt-1 ◦ ct ◦ ct-1
pt-1 ◦ ct ◦ ct+1 pt+1 ◦ ct ◦ ct-1 pt+1 ◦ ct ◦ ct+1 pt ◦ ct ◦ ct-1
pt ◦ ct ◦ ct+1 pt ◦ pt-1 ◦ ct pt ◦ pt+1 ◦ ct

Table 1: Feature templates for transition-based parsing model. lhww/lhwt: the word/POS of the head word of the left con-
stituency; rhww/rhwt: the word/POS of the head word of the right constituency; lsym/rsym: the non-terminal symbol of the
left/right constituency; elw/wlt: the word/POS of the token on the left of the left constituency; erw/ert: the word/POS of the
token on the right of the right constituency; pw/pt: the word/POS of the supposed head; cw/ct: the word/POS of the supposed
modifier; pt-1/pt+1: the POS to the left/right of the supposed head; ct-1/ct+1: the POS to the left/right of the supposed modifier.
Besides the original features generated according to the templates, the enhanced features with distance (between the heads the
two constituencies) as postfixes are also used in training and decoding.

achieve very high accuracy due to serious error-propagation.
An optimized strategy is the best-first transition-based

parsing. From the current state, the pair of adjacent subtrees
with the highest reducing probability is chosen and reduced
according to the predicted operation so as to arrive at the next
state. Such a best-first procedure iterates until there is only
one tree remained in the state. Based on the best-first algo-
rithm we further introduce the k-beam searching strategy. At
any time t, there are at most k best states maintained in a
queue. Each of these states pops out of the queue and gen-
erates its own succeeding states individually, then the k best
ones of all the succeeding states are reserved for the startup
of the next iteration at time t + 1. Algorithm 1 gives the
pseudo-code for k-beam transition-based parsing.

The training of the classifiers for transition predication is
straightforward. We first extract two sets of transition in-
stances from the annotated treebank, then train classifiers on
the instance sets. Since predication probabilities are needed
by k-beam transition-based parsing, the classifier should
give probabilistic predications rather than a single predicated
choice.

3 Cross-Lingual Extraction of Transition
Instances

Given a bilingual corpus with lexical alignment between each
pair of sentences, the source sentence and the target sentence,
the transition operations indicated by the syntactic tree of the
source sentence (source tree for short) can be projected onto
the target sentence across the alignment. Such a cross-lingual
projection procedure extracts a set of transition instances,
which is then used to train the target language parser just as

in the monolingual scenario. Similar to the treebank bina-
rization in the supervised learning situation, a source tree also
needs binarization before cross-lingual induction. Consider-
ing the syntactic non-isomorphism between two languages,
we further conduct exhaustive binarization for constituencies
with more than two kids so as to generate a binary forest
(source forest for short).

We first describe the cross-lingual extraction of transition
instances. For two adjacent spans in the target sentence (tar-
get span for short), xl and xr, if they exactly correspond to
two constituencies in the source forest (source constituency
for short), yl and yr, a transition instance can be extracted
for xl and xr according to the relationship of yl and yr in
the source forest. Specifically, if yl and yr form a larger con-
stituency α, the transition operation of the cross-lingually in-
duced instances is (reduce, α, β), where the unspecified β
indicates that the head child is yl or yr; If they can not form
a constituency, the transition operation of the induced in-
stances will be (separate, ∅, ∅). According to the transition
operation, two transition instances can be extracted for con-
stituency transition and dependency transition, respectively.

It relies on the lexical alignment to find the correspondence
between source constituencies and target spans. The determi-
nation of whether a target span corresponds to a source con-
stituency across the alignment is similar to the rule extraction
in statistical machine translation. The span x exactly corre-
sponds to the constituency y, if and only if each word in x
is aligned to words inside y, and each word covered by y is
aligned to words inside x. The head word of the span x is the
word aligned with the head word of the constituency y.

To alleviate the errors in the unsupervised learned word
alignment, we adopt the probabilistic word alignment A to
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improve the cross-lingual extraction of transition instances.
In probabilistic word alignment, a word in the source sen-
tence is aligned to all the words in the target sentence, of
course, with different probabilities. For example, p(i, j) in-
dicates the probability that the source word i is aligned to the
target word j. With probabilistic word alignment, the cor-
respondence between the target span x and the source con-
stituency y is not a binary value, but a probability indicating
the cross-lingual equivalent degree between x and y, which
can be calculated by:

p(x, y|A) = p(x|y,A)× p(y|x,A)

=

∑
i∈x,j∈y A(i, j)∑

i∈xA(i, j)
×
∑

i∈x,j∈y A(i, j)∑
j∈y A(i, j)

(3)

For a pair of adjacent target spans, xl and xr, and a pair of
(not necessary adjacent) source constituencies, yl and yr, a
candidate instance can be extracted with a probability:

p(xl, xr, yl, yr|A) = p(xl, yl|A)× p(xr, yr|A) (4)

Training instances are selected from the enumerated can-
didates according to the probabilities. Specifically, for the
situations where the pair of source constituencies form a
larger source constituency, only the candidate instance with
the highest probability can be reserved for each pair of con-
stituencies. From these reserved instances, the topN−1 best
candidates are selected as the final training instances, where
N denotes the length of the target sentence. The head word
of the span x is the word aligned with the head word of the
constituency y with the highest probability.

4 Related Work
Work on learning or improving NLP models in a multilin-
gual manner includes at least three groups, bilingual learning,
universal grammar, and cross-lingual induction. In decades,
bilingual learning achieves progress in constituency and de-
pendency parsing [Burkett and Klein, 2008; Huang et al.,
2009]. This strategy supposes that there are some manual
annotations for each language, then improves the parame-
ter leaning for one language or both languages resorting to
some kinds of bilingual constraints. Universal grammar is
an interesting methodology, there are some promising re-
searches in recent years [McDonald et al., 2013]. It supposes
that there are some degree of universal isomorphism among
the languages in the world, and designs parallel grammar or
parallel annotated corpora for multiple languages. Cross-
lingual induction aims to learn an NLP model for one lan-
guage resorting to the annotations from another language. It
achieves significant progress on part-of-speech tagging and
dependency parsing [Hwa et al., 2005; Ganchev et al., 2009;
Smith and Eisner, 2009; McDonald et al., 2011], but still per-
forms poorly on structurally complicated problems such as
constituency parsing.

There are already some investigations on improving cross-
lingual induction by alleviating the isomorphism assumption.
For dependency parsing, quasi-synchronous grammar can im-
prove the performance of cross-lingual projection [Smith and
Eisner, 2009]. For dependency parsing and part-of-speech

Treebank Training Developing Testing
WSJ 02-21 22 23

1-270
CTB 400-931 301-325 271-300

1001-1151

Table 2: Data partitioning for WSJ and CTB, in unit of sec-
tion.

tagging, using the dependency edge or part-of-speech tag as
the unit of cross-lingual projection is a natural and reasonable
strategy for these specific problems [Das and Petrov, 2011].
For constituency parsing, researchers achieved higher accu-
racy for cross-lingual induction when allowing a subsequence
in the target language sentence to correspond to an incom-
plete treelet in the source tree [Jiang et al., 2011]. However,
these methods are either suitable for only some specific prob-
lems, or limited in their ability to alleviate the isomorphism
assumption.

Compared to previous work, this work proposes for cross-
lingual induction a more universal, decomposed projection
strategy, where cross-lingual induction is performed in unit
of fundamental decisions of the structural predication. Ad-
mitting the cross-lingual consistency in the level of funda-
mental decisions while abandoning the isomorphism in the
level of linguistic structures, it can alleviate the isomorphism
assumption to the maximum degree. For more structurally
complicated problems, joint induction of constituency and
dependency grammar, decomposed induction achieves signif-
icant better performance over previous work by appropriately
remodeling of the NLP problem and effective cross-lingual
extraction of training instances. This strategy is easier to be
extended to complicated NLP problems such as deep seman-
tic parsing.

5 Experiments
We first evaluate the performance of the remodeled transition-
based parsing algorithm on the Wall Street Journal Treebank
(WSJ) [Marcus et al., 1993], where we use the balanced
F-measure as the accuracy for constituency parsing, and the
head attachment precision for dependency parsing. Then we
verify the effectiveness of decomposed cross-lingual gram-
mar induction, with experiments from English to Chinese us-
ing the FBIS Chinese-English dataset as the bilingual cor-
pus. The accuracy of the induced grammar is evaluated on
some portions of the Penn Chinese Treebank (CTB) [Xue
et al., 2005]. Especially for constituency grammar, follow-
ing the previous work of unsupervised constituency parsing,
we evaluate the induced grammar on the subsets of CTB 1,
CTB 2 and CTB 5, which contain no more than 10 or 40
words after the removal of punctuation. The gold-standard
POS tags are directly used for testing. The evaluation for un-
supervised parsing differs slightly from the standard metrics,
it ignores the multiplicity of brackets, brackets of span one,
and the bracket labels.

Two training instance sets are extracted from the banalized
trees in WSJ for constituency and dependency transition de-
cisions. For both training sets, the proportions of instances
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Figure 2: Frequencies of the transition instances with differ-
ent α (non-terminals), including the original distribution (be-
low) and the balanced distribution (upper). Items with origi-
nal frequency less than 0.05% are omitted for simplicity.

System Cons. F%/Dep. P%
Constituency Parsing
[Tsuruoka and Tsujii, 2005] 85.9
[Sagae and Lavie, 2005] 86.0
[Zhu et al., 2013] 91.3
Our Model 85.3
Dependency Parsing
[Yamada and Matsumoto, 2003] 90.3
[Nivre and Scholz, 2004] 87.3
[Zhang and Clark, 2008] 92.1
[Huang and Sagae, 2010] 92.1
Our Model 89.4

Table 3: The performance of different transition-based pars-
ing algorithms on WSJ, compared with previous work on
transition-based parsing. Note that the latest transition-based
parsers achieve significant improvement by using dynamic
programming, model combination, or other resources.

with different labels are very unbalanced. It is even worse
for the training instance set for constituency transition deci-
sions. Figure 2 shows the statistics of transition instances
according to different α (non-terminal) on WSJ. We can find
that the freq of different groups of instances exhibits a very
unbalanced distribution.

It is relatively easy to make a balance between different
labels in training instances for dependency transition deci-
sions. A great deal of instances with label (separate, ∅) are
obtained due to the exhaustive enumeration, but we can ran-
domly select kd instances out of them, where kd is simply set
as the larger one between the counts of the other two kinds of
instances. For the training instance set for constituency tran-
sition decisions, it is much harder to balance between labels,
since there are much more labels as well as much larger di-
versities between the proportions of different labels. An intu-
itive strategy is to duplicate the instances with minority labels
to balance with the instances with majority labels. If the in-
stances with a specific label are less than the averaged count
(across all the labels), we simply duplicate them to the aver-
aged count. Figure 2 also shows the balanced distribution

Figure 3: Developing curve of the k-beam transition-based
parsing algorithm.

Alignment Cons. F% Dep. P%
Deterministic alignment 52.7 58.0
Probabilistic alignment 53.4 58.8

Table 4: The performance of the cross-lingually induced joint
constituency and dependency grammar on the test set of CTB
5.

of instances with different labels. We find that the transition-
based model together with the simple balancing strategies al-
ready leads to promising performance.

After the extraction of the training instances, two classifiers
are trained with the maximum entropy toolkit by Zhang 1. We
set the gaussian prior as 1.0, the cutoff threshold as 0 (with-
out cutoff), and the maximum training iteration as 100, while
leaving other parameters as default values. With the transi-
tion decisions given by the classifiers, joint constituency and
dependency parsing can be conducted by the transition-based
algorithms described before. For the k-beam transition-based
parsing algorithm, the developing curve is shown in Figure
3, where less improvement can be obtained with k larger
than 16. Table 3 shows the performance of this algorithm
on WSJ, compared with previous work on transition-based
parsing. We find that the accuracy of the k-beam transition-
based parsing is comparable to the state-of-the-art transition-
based parsers, although without using complicated syntactic
features.

For the cross-lingual induction of transition instances, we
perform word alignment by running GIZA++ [Och, 2003] to
automatically obtain the lexical correspondence information.
The probabilistic alignment for each sentence pair is gener-
ated by summation and normalization of the k-best GIZA++
results, where k is set as 10 in our experiments. Training in-
stance sets for constituency and dependency transition are ex-
tracted according to the principle as described before. Table 4
shows the accuracy of the grammars cross-lingually induced
based on deterministic and probabilistic alignment. We find

1http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html
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Previous Work F/P(%) Our Work
Constituency Grammar Induction
[Klein and Manning, 2004] ♦ 46.7 57.3 (+10.6)
[Bod, 2006] ♦ 47.2 57.3 (+10.1)
[Seginer, 2007] 4 38.0 52.5 (+14.5)
[Jiang et al., 2011] 4 49.2 52.5 (+3.3)
[Parikh et al., 2014] ∇ 42.2 52.5 (+10.3)

Dependency Grammar Induction
[Klein and Manning, 2004] ♦ 55.2 59.7 (+4.5)
[Hwa et al., 2005] ♥ 53.9 57.5 (+3.6)
[McDonald et al., 2011] ♣ 49.3 58.8 (+9.5)
[Naseem et al., 2012] ♣ 51.2 58.8 (+7.6)
[Spitkovsky et al., 2013] ♣ 58.4 58.8 (+0.4)

♠ 52.5 58.8 (+6.3)

Table 5: The performance of the cross-lingually induced
grammar on CTB compared with previous work on con-
stituency and dependency grammar induction. ♦: sentences
≤ 10 words from CTB 1 after the removal of punctuation;
4/∇: sentences ≤ 40 words from CTB 5 or the last 20% of
CTB 5 after the removal of punctuation; ♥: the test set of
CTB 2 defined by Hwa et al. [2005]; ♣/♠: the Chinese sec-
tion of CoNLL test set of 2006/2007. Although we have not
obtained the datasets of CoNLL06 and CoNLL07, we give
our results on the test set of CTB 5 to make a rough compari-
son.

that the probabilistic alignment brings obvious improvement
over the baseline using deterministic alignment. On both con-
stituency and dependency accuracy, the final grammar signif-
icantly outperforms previous work on unsupervised or cross-
lingual grammar induction especially on long sentences, as
shown in Table 5. It is not fair for cross-lingual induction
to compare with unsupervised models that utilize only raw
text. However, it is a more effective strategy to build an ini-
tial model, or a good initialization for unsupervised models,
if the resource-scarce language that we focus on has bilingual
corpus parallel with a resource-rich language.

Considering the difference between the annotation styles
of the source language treebank and the target language test-
ing set, it can be estimated that the performance of the cross-
lingual grammar induction is also limited by the consistency
between the annotation styles. Since there are no complete
trees generated in the cross-lingual grammar induction pro-
cedure, we conduct an initial experiment at the level of clas-
sification instances, as shown in Figure 4. The constituency
transition instance sets are used since the non-isomorphism
between constituency grammars is much larger than between
dependency grammars. Indicated by the training curves, a
classifier performs well on the developing set corresponding
to the training set (even for the cross-lingually induced in-
stances), but performs significantly worse on a different de-
veloping set. This initial experiment inspires us to investigate
the difference between annotation styles of the test set and
the induced grammar. It would be a promising direction for
future improvement to address and tackle the difference and
relationship between annotation styles.

Figure 4: Performance curve of the constituency classifiers on
developing sets. X→Y indicates that the classifier trained on
instances extracted from the training portion of X is evaluated
on the instances extracted from the developing portion of Y.

6 Conclusion and Future Work
This paper describes a decomposed projection strategy for
cross-lingual grammar induction. On joint cross-lingual in-
duction of constituency and dependency grammars from En-
glish to Chinese, the decomposed strategy significantly out-
performs previous work on cross-lingual or unsupervised
grammar induction. This validates that, for an NLP prob-
lem, if there is an appropriate remodeling where the funda-
mental decisions not only support the efficient derivation of
a good analysis, but also facilitate the cross-lingual extrac-
tion of decision instances, better models can be obtained by
decomposed cross-lingual induction.

This work can be improved in the future in two aspects.
First, although the probabilistic lexical alignment improves
the cross-lingual induction to some degree, it is still restricted
by the performance of lexical alignment. Joint lexical align-
ment and grammar induction may be more effective. Sec-
ond, a pipeline manner is adopted in the current method, that
is, cross-lingual projection of instances followed by offline
training of the classifiers, which is inconvenient for utilization
of complicated syntactic features. It is hopeful to try a syn-
chronous manner that performs cross-lingual projection and
classifier training incrementally, in order to leverage more
complicated features.
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