
A Fixed-Point Decoding Approach for Statistical
Machine Translation on Mobile Terminals

Xiang Li, Jin’an Xu
School of Computer and Information Technology

Beijing Jiaotong University
Beijing, China

{06281013, jaxu}@bjtu.edu.cn

Wenbin Jiang, Qun Liu, Yajuan Lü
Key Laboratory of Intelligent Information Processing

Institute of Computing Technology
Chinese Academy of Sciences

Beijing, China
{jiangwenbin, liuqun, lvyajuan}@ict.ac.cn

Abstract—The demand for statistical machine translation on mobile
terminals is increasing rapidly, but translation speed is restricted by
the embedded processors without a floating-point unit. This paper
proposes an approach to convert floating-point numbers into fixed-
point numbers for SMT decoding on mobile terminals in order to
reduce the impact of the processors without a floating-point unit on
translation speed. The experiments based on PC and mobile terminal
show that this approach ensures the quality of translation and the
speed of fixed-point arithmetic operations is 135.6% faster than that of
floating-point arithmetic operations. Therefore, this approach can
efficiently improve translation speed of SMT systems on mobile
terminals with weak ability in floating-point arithmetic operations.

key words: SMT, fixed-point, mobile terminals

1. INTRODUCTION

Machine Translation has multiple personalities. It is a
technological challenge and has come to be understood as an
economic necessity. It is a venerable scientific enterprise and a
component of the larger area of studies concerned with the
studies of human language understanding capacity [1].

Statistical machine translation, commonly known as SMT,
provides a solution to overcome language barrier, and at the
same time, rapid development of embedded technology enables
people to install and run complex SMT systems on mobile
terminals. We can fully expect that a mobile terminal with a
SMT system would be an indispensable tool in international
trade and communication.

Current commercial machine translation systems on mobile
terminals are mainly based on the rule-based method requiring
the manual development of linguistic rules, which can be costly,
and which often does not generalize to other languages. On the
contrary, the statistical method is not dependent on linguistic
knowledge, and then translation model supports multi-language
translation better, but it often consumes much memory
requirements [2] [3].

For the past few years, with the development of machine
translation systems, recent progress in corpus-based speech and
language processing technology has made it possible to realize
speech translation in real situations. Some multilingual speech
translation systems have been constructed successfully [4-12]. It

means that machine translation will be widely used on mobile
terminals in the near future.

However, many low-cost embedded processors do not have
a floating-point unit (FPU) support for floating-point arithmetic
operations, which results in low translation performance of
SMT systems on mobile terminals requiring numerous
floating-point arithmetic operations. Similarly, speech
translation on mobile terminals has also the same problem as
that. However, fixed-point hardware implementations of SMT
decoding algorithms can often achieve higher performance
with lower computational requirements than floating-point
hardware implementations. This paper proposes a fixed-point
decoding approach to improve the problem. The experiments
show that this approach enables users to achieve almost the
same result as in floating-point implementation with minimum
hardware resources and improves the translation speed of SMT
systems on mobile terminals effectively.

The organization of this paper is as follows. In section 2, the
isolated numerical foundation used in this paper is provided in
detail. In section 3, we introduce three current traditional
methods to handle floating-point arithmetic operations when
processors have no FPUs, and then we present the detail
implementation of the fixed-point approach. In section 4, we
present the experimental results. Section 5 is the summary and
future work.

2. NUMERICAL FOUNDATION

Before presenting the fixed-point decoding approach, we
provide a brief introduction to the numerical foundation closely
related to the conversion from floating-point numbers to fixed-
point numbers.

2.1 Floating-point
The IEEE Standard for Binary Floating-Point Arithmetic [13],
namely IEEE 754-1985, is the most common representation
today for real numbers on computers. IEEE 754-1985 floating-
point numbers have three basic components: the sign, the
exponent and the mantissa. The mantissa is composed of the
fraction and an implicit leading digit. The exponent base (2) is
implicit and need not be stored.

This work was supported by the Fundamental Research Funds for the
Central Universities (2009JBM027)

978-1-4244-7820-0/10/$26.00 ©2010 IEEE IUCS2010

The IEEE 754-1985 specifies how single-precision (32 bit)
and double precision (64 bit) floating point numbers are to be
represented, as well as how arithmetic should be carried out on
them.

(1) Single-precision

The IEEE 754-1985 single-precision floating point
standard representation requires a 32-bit word, which may
be represented as numbered from 0 to 31, left to right. The
first bit is the sign bit, S, the next eight bits are the exponent
bits, E, and the final 23 bits are the mantissa M.

The Fig. 1 shows the representation of single-precision
floating-point number.

Fig. 1. Single-��������	
floating-point �������	�����	

(2) Double precision

The IEEE 754-1985 double precision floating point
standard representation requires a 64-bit word, which may
be represented as numbered from 0 to 63, left to right. The
first bit is the sign bit, S, the next eleven bits are the
exponent bits, E, and the final 52 bits are the mantissa M.

The Fig. 2 shows the representation of double precision
floating-point number.

Fig. 2. Double-��������	
floating-point �������	�����	

The sign bit

The sign bit is as simple as it gets. 0 denotes a positive
number; 1 denotes a negative number. Flipping the value of
this bit flips the sign of the floating-point number.

The exponent

The exponent field needs to represent both positive and
negative exponents. To do this, a bias is added to the actual
exponent in order to get the stored exponent. For IEEE 754-
1985 single-precision floating-point number, this value is 127.
Thus, an exponent of zero means that 127 is stored in the
exponent field. A stored value of 200 indicates an exponent of
(200-127), namely 73. Note that exponents of -127 (all 0s) and
+128 (all 1s) are reserved for special numbers. For IEEE 754-
1985 double precision floating-point number, the exponent
field is 11 bits, and has a bias of 1023.

The mantissa

The mantissa, also known as the significand, represents the
precision bits of the floating-point number. It is composed of
an implicit leading bit and the fraction bits.

To find out the value of the implicit leading bit, consider
that any number can be expressed in scientific notation in

many different ways. For example, the number one can be
represented as any of these:

1.00 × 100

0.01 × 102

100 × 10-2

In order to maximize the quantity of representable numbers,
floating-point numbers are typically stored in normalized form.
This basically puts the radix point after the first non-zero digit.
In normalized form, one is represented as 1.0 × 100.

2.2 Fixed-point
In computer science, the fixed-point number representation is
a real data type. Fixed-point numerical representation uses a
series of bits in binary format to represent a value. It is
specified in the form of Fig. 3, where S indicates signed
representation, IWL is the integer wordlength, and FWL is the
fractional wordlength.

After deciding the location of implied binary point, the
fixed-point format of all numbers is uniform, so we never
consider the decimal problem.

���
��
Fixed-point ������������	

3. THE FIXED-POINT APPROACH

There are three traditional methods to handle floating-point
arithmetic operations when processors have no FPUs:

(1) Define variables as floating-point type. Advanced
programming languages call run-time function to deal
with floating-point arithmetic operations automatically. It
eliminates the difference between fixed-point processors
and floating-point processors so that programmers can
make less work. But the method will produce bloated
code and slow processing speed;

(2) Define variables as integer type. We handle floating-point
arithmetic operations using a magnification method. The
method is simple, but lack of flexibility;

(3) If processors have no FPUs, then the floating-point
instructions are trapped and executed by the floating-point
emulator module. Programmers don’t have to know
whether or not the processor has a FPU. The only real
difference is execution speed.

This paper proposes a fixed-point approach to address the
deficiencies of the traditional methods and improve the
floating-point arithmetic operations speed of processors
without FPUs.

3.1 Conversion
The first step is to decide the fixed-point format by analyzing
the quantization and resolution of involved floating-point
numbers. Q-format representation is a fixed-point format where
the number of fractional bits (and optionally the number of

integer bits) is specified. For example, a Q15 number has 15
fractional bits; a Q1.14 number has 1 integer bit and 14
fractional bits. Because Q-format numbers are fixed-point
numbers, they can be stored and operated as integers. It is often
used in processors that have no FPUs to represent fixed-point
numbers.

Therefore, for SMT decoding on mobile terminals, we adopt
the Q-format to deal with floating-point arithmetic operations.
We can also change the Q-format to fit in with different
requirements.

The implementation of converting floating-point numbers into
Q-format fixed-point numbers is as follows.

(1) Get the consecutive bytes of a floating-point number in float
or double variable type, and then store them in a specific
integer variable.

(2) Get the sign, the exponent and the mantissa of the floating-
point number according to the IEEE 754-1985.

(3) Scale the mantissa according to the exponent, and then
convert the scaled mantissa into a corresponding fixed-point
number in the Q-format. In addition, we handle the
redundant bits (more than the word length of fixed-point
number) in a truncated pattern.

Finally, we take a single-precision floating-point number
1.1234 as an example to explain the conversion intuitively. The
floating-point format of 1.1234 is as shown in Fig. 4.

Fig. 4. Single-��������	
floating-point format of 1.1234

Symbol: S=0, it shows that the number is positive;

Exponent: E=0x7F, the actual exponent E'=E-Bias=127-127=0;

Mantissa: M=0x8FCB92, the actual mantissa M'=M|0x800000=
0x8FCB92.

We convert the floating-point number into a Q8 format fixed-
point number which is interpreted as a short integer type in C++
language. The Q8 fixed-point number format of 1.1234 is as
shown in Fig. 5.

���
��
��
format ��
������

3.2 Fixed-point class
In order to utilize variable precision fixed-point arithmetic in
the SMT system on mobile terminals, a fixed-point class,
called Fixed_SMT, is developed in the C++ language.

The implementation of the fixed-point class will be
described later. In this way, the main operators in a floating-
point implementation can be represented by fixed-point
objects. A Fixed_SMT object contains two main attributes:
IWL and FWL.

By defining a different integer word length and fraction
word length for each fixed-point operator, all operators can be
of arbitrary wordlength.

Floating-point numbers can be represented in fixed-point
format, and the format used in this work is shown in Figure 4.
All fixed-point numbers are represented in 2’s complement
format. The integer wordlength is the number of bits used to
represent the integer part, and the fraction wordlength is the
number of bits used to represent the fraction part.

C++ is used because it offers faster execution than other
object oriented languages. Several operators such as +, -, * and
= are overloaded by the fixed-point class.

� +/-: These operators can perform addition or
subtraction of two fixed-point objects or a floating-
point variable and a fixed-point object, and the result
is a fixed-point object.

� *: This operator can perform multiplication of two
Fixed_SMT objects or a floating-point variable and a
Fixed_SMT object. The product’s wordlength will be
equal to the summation of the two input operands’
wordlength minus one. Since the specific wordlength
of fixed-point numbers is used for the whole decoding,
we set the product’s wordlength as same as the
specific wordlength. It is important to note that we
must keep track of the implicit implied binary point
after multiplying Q-format numbers.

� =: If the input operand is a floating-point number, this
operator will convert the floating point number into a
fixed-point object at a precision specified by the target
object. If the input operand is a fixed-point object, this
operator will round it up to the target object’s
precision.

3.3 Operator overloading
Converting a floating-point program into a fixed-point
program can be done by replacing the variable definition. The
rest of the program is unchanged. For example, the following
floating-point program:

float a;
float b;
float c;

a = 1.11;
b = 2.22;
c = a + b;

It can be transformed into the fixed-point implementation:

Fixed_SMT a;
Fixed_SMT b;
Fixed_SMT c;

a = 1.11;
b = 2.22;
c = a + b;

In the above fixed-point program, in statements a=1.11 and
b=2.22, since the “=” operator is overloaded, floating-point
values 1.11 and 2.22 will be converted into fixed-point format
and stored in Fixed_SMT objects a and b. Statement “a+b”
will be handled by the overloaded operator “+” and the result
will be a Fixed_SMT object.

3.4 Design methodology
Fig. 6 shows the system design flow employed in this paper.
The isolated model training was done using floating-point
arithmetic. The decoder was rewritten in C++ using the fixed-
point class. And then we need know the quantization of the
floating-point variables involved in SMT decoding in advance,
and then use the fixed-point objects to represent and replace
the floating-point variables and simulate the original floating-
point arithmetic operations according to the principles of
fixed-point arithmetic operations. At last, it is necessary to test
and adjust whether the quantization and precision of the fix-
point class can make the system word correctly.

Decoder of SMT system
described using Fixed_SMT

Simulate floating-point operations
in accordance with fixed-point

Model training using
floating-point arithmetic

Analyse quantization of
floating-point variables

Test and adjust
the quantization

and precision

Fig. 6. System design flow

4. EXPERIMENTS
In this paper, we implement a fixed-point decoder based on
Xiong et al. (2006)’s system Bruin [14] as our experimental
decoder.

In this section, we present the experiments based on PC and
mobile terminal to compare the performance of the fixed-point
and the floating-point decoder.
4.1 experiment based on PC

We make the experiment with Chinese-to-English translation.
The training corpus consists of 239K sentence pairs. We used
the 2002 NIST MT Evaluation test set as our development
corpus, and used the 2005 NIST MT Evaluation test set as out
test corpus.

For the language model, we used SRI Language Modeling
Toolkit [15] to train a 4-gram language model with modified
Kneser-Ney smoothing [16]. Our evaluation metric is BLEU [17]

as calculated by the script mteval-v11b.pl with its default
setting.

Table 2 shows that the fixed-point decoder can ensure the
quality of translation. However, the fixed-point decoding is
only a little slower than the floating-point decoding, so we can
predict that the translation speed can be much improved when
we deploying the fixed-point decoder on mobile terminals
without FPUs.

�����
��
��	���������	
��
��

Processor Memory Operating system
Quad-Core AMD

Opteron Processor 8347
HE, 1.9 GHz 60 GB

Red Hat Enterprise
Linux AS X64

�����
��
���������	
��
���� !���	�
�	
������	�!���	�

 ��� �	�

Decoder Translation time BLEU
Floating-point decoding 8978.74 s 0.3035

Fixed-point decoding 9066.57 s 0.3035

SMT systems have a significant requirement for mobile
terminals in memory, but we are limited to the hardware
condition, we decide to make the experiment to compare the
arithmetic performance between fixed-point and floating-point
for a mobile terminal so that we can indirectly verify the faster
translation speed of the fixed-point decoder of SMT systems
on mobile terminals.

4.2 experiment based on mobile terminal
We make 10,000,000 loop operations, and then select
frequency multiplication and accumulation of SMT decoding
as arithmetic calculation type in the experiment based on
mobile terminal.

Table 4 shows that arithmetic performance of fixed-point is
faster 135.6% than that of floating-point. Therefore, we come
to a conclusion that this approach can improve translation
speed of SMT decoding when deploying the fixed-point
decoder on the mobile terminal without FPUs.

�����
��
��	���������	
�	
������
�����	��

Processor Memory Operating system
Intel ARM920T

PXA27X, 312MHz 64 MB
Windows Mobile 6.0

Standard
�����
��
���������	
��
���� !���	�
�	
������	�!���	�

����"�����
��������	�

 Operation time
Floating-point 14.75 s

Fixed-point 6.25s

5. SUMMARY AND FUTURE WORK
Based on the analysis of current SMT systems on mobile
terminals, we draw a conclusion that embedded processors
without FPUs restrict decoding speed. By analyzing the
difference between floating-point and fixed-point, and
associated arithmetic operations algorithm, we propose a
fixed-point approach of SMT decoding to solve the bottleneck.
This approach improves decoding speed of SMT systems on
mobile terminals with weak ability in floating-point arithmetic
operations significantly so that SMT decoding on mobile
terminals don’t have to rely on the FPU. SMT decoding can be
finished by using a universal CPU on mobile terminals. It
improves translation speed and ensures good quality of
translation.

The fixed-point approach is compatible with most on
mobile terminals with different processors and SMT decoders
so that it is convenient for users to adjust the parameter
configuration of the fixed-point class and satisfy different
application requirements.

In addition, this approach also can be applied to speech
recognition, audio & video decoding and other related fields.
In our future work, some experiments would be made to verify
the validity in these fields.

ACKNOWLEDGMENT

I am indebted to Jin’an Xu and Qun Liu for their guide.
Thanks to Yajuan Lü, Wenbin Jiang, Hao Xiong, Zhaopeng
Tu, Wei Luo, Linfeng Song and Meng Sun’s help. Finally, I
am indebted to the reviewers for helpful suggestions that
improved the quality of this paper.

REFERENCES

[1] Nirenburg, Sergei and Yorick Wilks. 2000. Machine translation. Advances in
Computers, 52:160-189.

[2] Jinan Xu, Prospects in Machine Translation, Cross-Strait Conference on
Information Science and Technology, CSCIST 2010, pp368-372,
Qinhuangdao.

[3] Qun Liu, Survey on Statistical Machine Translation, Journal of Chinese
Information Processing 2003 17(4):1-12

[4] R. Zhang, H. Yamamoto, M. Paul, H. Okuma, K.Yasuda, Y. Lepage, E. Denoual,
D. Mochihashi, A.Finch, and E. Sumita, “The NiCT-ATR Statistical Machine
Translation System for the IWSLT 2006 Evaluation,” Proc. of the International
Workshop on Spoken Language Translation, pp. 83-90, Kyoto, Japan, 2006.

[5] T. Shimizu, Y. Ashikari, E. Sumita, H. Kashioka, and S. Nakamura,
“Development of client-server speech translation system on a multi-lingual
speech communication platform,” Proc. of the International Workshop on
Spoken Language Translation, pp. 213-216, Kyoto, Japan, 2006.

[6] S. Nakamura, K. Markov, H. Nakaiwa, G. Kikui, H. Kawai, T. Jitsuhiro, J. Zhang,
H. Yamamoto, E.Sumita, and S. Yamamoto. The ATR multilingual speech-to-
speech translation system. IEEE Trans. on Audio, Speech, and Language
Processing, 14, No.2:365–376, 2006.

[7] FügenC, KolssM, PaulikM, WaibelA (2006b) Open domain speech translation:
from seminars and speechesto lectures. In: TC-STAR workshop on speech to
speech translation, Barcelona, Spain, pp.81-86.

[8] Hamon O, Mostefa D, Choukri K (2007) End-to-end evaluation of a speech-to-
speech translation system in TC-STAR. In: Machine translation summit XI,
Copenhagen, Denmark, pp 223–230.

[9] Stüker S, Paulik M, Kolss M, Fügen C, Waibel A (2007) Speech translation
enhanced ASR for European Parliament speeches – on the influence of ASR

performance on speech translation. In: ICASSP 2007, international conference
on acoustics, speech, and signal processing, Honolulu, Hawaii, pp. 1293-1296.

[10] Zhou, Bowen, Déchelotte Daniel, and Gao Yuqing , Two-way Speech-to-Speech
Translation on Handheld Devices, Intl. Conf. on Spoken Language Processing,
10/2004, Jeju Island, South Korea, p. 1637-1640, (2004)

[11] Shimizu T, Ashikari Y, Sumita E, et al. NICT-ATR Chinese-Japanese-English
speech-to-speech translation system. In: Proceedings of the 9th National
Conference on Man-Machine Speech Communication (NCMMSC).
Huangshan,China, 2007.

[12] N. Tsourakis, M. Georghescul, P. Bouillon, and M. Rayner. 2008. Building
mobile spoken dialogue applications using Regulus. In Proceedings of LREC
2008, Marrakesh, Morocco.

[13] IEEE Standards Board and ANSI. IEEE Standard for Binary Floating-Point
Arithmetic, 1985, IEEE Std 754-1985-1985.

[14] Deyi Xiong, Qun Liu, Shouxun Lin. Maximum entropy based phrase reordering
model for statistical machine translation. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, p. 521-528, 2006.

[15] Andreas Stolcke. SRILM—An Extensible Language Modeling Toolkit. Proc.
Intl. Conf. on Spoken Language Processing. v. 2, p. 901-904, 2002.

[16] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. Technical Report TR-10-98, Harvard
University Center for Research in Computing Technology, 1998.

[17] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of ACL
2002, p. 311-318, 2002.

[18] David Goldberg. “What Every Computer Scientist Should Know About
Floating-Point Arithmetic”. ACM Computer Surveys, v. 23, n. 1, p. 5-48, 1991.

[19] Andrea G. M. Cilio, Henk Corporaal. “Floating-Point to Fixed-Point Conversion
of C Code”. 1997.

[20] Robert Gordon. “A Calculated Look at Fixed-Point Arithmetic”. Embedded
Systems Programming, p. 72-78, 1998.

[21] Bjarne Stroustrup. The C++ Programming Language, 2nd ed. Reading, MA:
Addison Wesley, 1993.

[22] Computer Organization and Architecture, William Stallings, pp. 222-234
Macmillan Publishing Company, ISBN 0-02-415480-6.

[23] K.K. Shin, J.C.H. Poon, and K.C. Li, “A fixed-point DSP based Cantonese
recognition system,” in IEEE International Symposium on Industrial Electronics,
pp. 390–393 vol.1,1995.

[24] Nishida, Y., Nakadai, Y., Suzuki, Y., Sakurai, T., Kurokawa, T., and Sato, H.,
“Voice recognition focusing on vowel strings on a fixed-point 20-MIPS DSP
board,” in IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. 137–140 vol.1, 1999.

[25] Guanghui Hui, Kwok-Chiang Ho, and Zenton Goh, “A robust speaker-
independent speech recognizer on ADSP2181 fixed-point DSP,” in 1998 Fourth
International Conference on Signal Processing, pp. 694–697 vol.1, 1998.

[26] Yuet-Ming Lam, Man-Wai Mak, and Philip Heng-Wai Leong, “Fixed-Point
Implementations of Speech Recognition Systems,” GSPx Conference, Apr.3,
2003.

