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Abstract—The demand for statistical machine translation on mobile 
terminals is increasing rapidly, but translation speed is restricted by 
the embedded processors without a floating-point unit. This paper 
proposes an approach to convert floating-point numbers into fixed-
point numbers for SMT decoding on mobile terminals in order to 
reduce the impact of the processors without a floating-point unit on 
translation speed. The experiments based on PC and mobile terminal 
show that this approach ensures the quality of translation and the 
speed of fixed-point arithmetic operations is 135.6% faster than that of 
floating-point arithmetic operations. Therefore, this approach can 
efficiently improve translation speed of SMT systems on mobile 
terminals with weak ability in floating-point arithmetic operations. 
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1. INTRODUCTION

Machine Translation has multiple personalities. It is a 
technological challenge and has come to be understood as an 
economic necessity. It is a venerable scientific enterprise and a 
component of the larger area of studies concerned with the 
studies of human language understanding capacity [1].

Statistical machine translation, commonly known as SMT,   
provides a solution to overcome language barrier, and at the 
same time, rapid development of embedded technology enables 
people to install and run complex SMT systems on mobile 
terminals. We can fully expect that a mobile terminal with a 
SMT system would be an indispensable tool in international 
trade and communication. 

Current commercial machine translation systems on mobile 
terminals are mainly based on the rule-based method requiring 
the manual development of linguistic rules, which can be costly, 
and which often does not generalize to other languages. On the 
contrary, the statistical method is not dependent on linguistic 
knowledge, and then translation model supports multi-language 
translation better, but it often consumes much memory 
requirements [2] [3].

For the past few years, with the development of machine 
translation systems, recent progress in corpus-based speech and 
language processing technology has made it possible to realize 
speech translation in real situations. Some multilingual speech 
translation systems have been constructed successfully [4-12]. It 

means that machine translation will be widely used on mobile 
terminals in the near future.  

However, many low-cost embedded processors do not have 
a floating-point unit (FPU) support for floating-point arithmetic 
operations, which results in low translation performance of 
SMT systems on mobile terminals requiring numerous 
floating-point arithmetic operations. Similarly, speech 
translation on mobile terminals has also the same problem as 
that. However, fixed-point hardware implementations of SMT 
decoding algorithms can often achieve higher performance 
with lower computational requirements than floating-point 
hardware implementations. This paper proposes a fixed-point 
decoding approach to improve the problem. The experiments 
show that this approach enables users to achieve almost the 
same result as in floating-point implementation with minimum 
hardware resources and improves the translation speed of SMT 
systems on mobile terminals effectively. 

The organization of this paper is as follows. In section 2, the 
isolated numerical foundation used in this paper is provided in 
detail. In section 3, we introduce three current traditional 
methods to handle floating-point arithmetic operations when 
processors have no FPUs, and then we present the detail 
implementation of the fixed-point approach. In section 4, we 
present the experimental results. Section 5 is the summary and 
future work. 

2. NUMERICAL FOUNDATION

Before presenting the fixed-point decoding approach, we 
provide a brief introduction to the numerical foundation closely 
related to the conversion from floating-point numbers to fixed-
point numbers. 

2.1 Floating-point 
The IEEE Standard for Binary Floating-Point Arithmetic [13],
namely IEEE 754-1985, is the most common representation 
today for real numbers on computers. IEEE 754-1985 floating-
point numbers have three basic components: the sign, the 
exponent and the mantissa. The mantissa is composed of the 
fraction and an implicit leading digit. The exponent base (2) is 
implicit and need not be stored.  
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The IEEE 754-1985 specifies how single-precision (32 bit) 
and double precision (64 bit) floating point numbers are to be 
represented, as well as how arithmetic should be carried out on 
them. 

(1) Single-precision 

The IEEE 754-1985 single-precision floating point 
standard representation requires a 32-bit word, which may 
be represented as numbered from 0 to 31, left to right. The 
first bit is the sign bit, S, the next eight bits are the exponent 
bits, E, and the final 23 bits are the mantissa M. 

The Fig. 1 shows the representation of single-precision 
floating-point number. 

Fig. 1. Single-��������	
floating-point �������	�����	

(2) Double precision 

The IEEE 754-1985 double precision floating point 
standard representation requires a 64-bit word, which may 
be represented as numbered from 0 to 63, left to right. The 
first bit is the sign bit, S, the next eleven bits are the 
exponent bits, E, and the final 52 bits are the mantissa M. 

The Fig. 2 shows the representation of double precision 
floating-point number.  

Fig. 2. Double-��������	
floating-point �������	�����	

The sign bit 

The sign bit is as simple as it gets. 0 denotes a positive 
number; 1 denotes a negative number. Flipping the value of 
this bit flips the sign of the floating-point number. 

The exponent 

The exponent field needs to represent both positive and 
negative exponents. To do this, a bias is added to the actual 
exponent in order to get the stored exponent. For IEEE 754-
1985 single-precision floating-point number, this value is 127. 
Thus, an exponent of zero means that 127 is stored in the 
exponent field. A stored value of 200 indicates an exponent of 
(200-127), namely 73. Note that exponents of -127 (all 0s) and 
+128 (all 1s) are reserved for special numbers. For IEEE 754-
1985 double precision floating-point number, the exponent 
field is 11 bits, and has a bias of 1023. 

The mantissa 

The mantissa, also known as the significand, represents the 
precision bits of the floating-point number. It is composed of 
an implicit leading bit and the fraction bits. 

To find out the value of the implicit leading bit, consider 
that any number can be expressed in scientific notation in 

many different ways. For example, the number one can be 
represented as any of these: 

1.00 × 100

0.01 × 102

100 × 10-2

In order to maximize the quantity of representable numbers, 
floating-point numbers are typically stored in normalized form. 
This basically puts the radix point after the first non-zero digit. 
In normalized form, one is represented as 1.0 × 100.

2.2 Fixed-point 
In computer science, the fixed-point number representation is 
a real data type. Fixed-point numerical representation uses a 
series of bits in binary format to represent a value. It is 
specified in the form of Fig. 3, where S indicates signed 
representation, IWL is the integer wordlength, and FWL is the 
fractional wordlength. 

After deciding the location of implied binary point, the 
fixed-point format of all numbers is uniform, so we never 
consider the decimal problem. 
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3. THE FIXED-POINT APPROACH

There are three traditional methods to handle floating-point 
arithmetic operations when processors have no FPUs: 

(1) Define variables as floating-point type. Advanced 
programming languages call run-time function to deal 
with floating-point arithmetic operations automatically. It 
eliminates the difference between fixed-point processors 
and floating-point processors so that programmers can 
make less work. But the method will produce bloated 
code and slow processing speed; 

(2) Define variables as integer type. We handle floating-point 
arithmetic operations using a magnification method. The 
method is simple, but lack of flexibility; 

(3) If processors have no FPUs, then the floating-point 
instructions are trapped and executed by the floating-point 
emulator module. Programmers don’t have to know 
whether or not the processor has a FPU. The only real 
difference is execution speed. 

This paper proposes a fixed-point approach to address the 
deficiencies of the traditional methods and improve the 
floating-point arithmetic operations speed of processors 
without FPUs. 

3.1 Conversion 
The first step is to decide the fixed-point format by analyzing 
the quantization and resolution of involved floating-point 
numbers. Q-format representation is a fixed-point format where 
the number of fractional bits (and optionally the number of 



integer bits) is specified. For example, a Q15 number has 15 
fractional bits; a Q1.14 number has 1 integer bit and 14 
fractional bits. Because Q-format numbers are fixed-point 
numbers, they can be stored and operated as integers. It is often 
used in processors that have no FPUs to represent fixed-point 
numbers.  

Therefore, for SMT decoding on mobile terminals, we adopt 
the Q-format to deal with floating-point arithmetic operations. 
We can also change the Q-format to fit in with different 
requirements.  

The implementation of converting floating-point numbers into 
Q-format fixed-point numbers is as follows. 

(1) Get the consecutive bytes of a floating-point number in float 
or double variable type, and then store them in a specific 
integer variable. 

(2) Get the sign, the exponent and the mantissa of the floating-
point number according to the IEEE 754-1985.  

(3) Scale the mantissa according to the exponent, and then 
convert the scaled mantissa into a corresponding fixed-point 
number in the Q-format. In addition, we handle the 
redundant bits (more than the word length of fixed-point 
number) in a truncated pattern. 

Finally, we take a single-precision floating-point number 
1.1234 as an example to explain the conversion intuitively. The 
floating-point format of 1.1234 is as shown in Fig. 4. 

Fig. 4. Single-��������	
floating-point format of 1.1234 

Symbol: S=0, it shows that the number is positive; 

Exponent: E=0x7F, the actual exponent E'=E-Bias=127-127=0; 

Mantissa: M=0x8FCB92, the actual mantissa M'=M|0x800000= 
0x8FCB92. 

We convert the floating-point number into a Q8 format fixed-
point number which is interpreted as a short integer type in C++ 
language. The Q8 fixed-point number format of 1.1234 is as 
shown in Fig. 5. 
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3.2 Fixed-point class 
In order to utilize variable precision fixed-point arithmetic in 
the SMT system on mobile terminals, a fixed-point class, 
called Fixed_SMT, is developed in the C++ language. 

The implementation of the fixed-point class will be 
described later. In this way, the main operators in a floating-
point implementation can be represented by fixed-point 
objects. A Fixed_SMT object contains two main attributes: 
IWL and FWL. 

By defining a different integer word length and fraction 
word length for each fixed-point operator, all operators can be 
of arbitrary wordlength. 

Floating-point numbers can be represented in fixed-point 
format, and the format used in this work is shown in Figure 4. 
All fixed-point numbers are represented in 2’s complement 
format. The integer wordlength is the number of bits used to 
represent the integer part, and the fraction wordlength is the 
number of bits used to represent the fraction part. 

C++ is used because it offers faster execution than other 
object oriented languages. Several operators such as +, -, * and 
= are overloaded by the fixed-point class. 

� +/-: These operators can perform addition or 
subtraction of two fixed-point objects or a floating-
point variable and a fixed-point object, and the result 
is a fixed-point object. 

� *: This operator can perform multiplication of two 
Fixed_SMT objects or a floating-point variable and a 
Fixed_SMT object. The product’s wordlength will be 
equal to the summation of the two input operands’ 
wordlength minus one. Since the specific wordlength 
of fixed-point numbers is used for the whole decoding, 
we set the product’s wordlength as same as the 
specific wordlength. It is important to note that we 
must keep track of the implicit implied binary point 
after multiplying Q-format numbers. 

� =: If the input operand is a floating-point number, this 
operator will convert the floating point number into a 
fixed-point object at a precision specified by the target 
object. If the input operand is a fixed-point object, this 
operator will round it up to the target object’s 
precision.

3.3 Operator overloading 
Converting a floating-point program into a fixed-point 
program can be done by replacing the variable definition. The 
rest of the program is unchanged. For example, the following 
floating-point program: 

float a; 
float b; 
float c; 

a = 1.11; 
b = 2.22; 
c = a + b; 

It can be transformed into the fixed-point implementation: 

Fixed_SMT a; 
Fixed_SMT b; 
Fixed_SMT c; 

a = 1.11; 
b = 2.22; 
c = a + b; 



In the above fixed-point program, in statements a=1.11 and 
b=2.22, since the “=” operator is overloaded, floating-point 
values 1.11 and 2.22 will be converted into fixed-point format 
and stored in Fixed_SMT objects a and b. Statement “a+b” 
will be handled by the overloaded operator “+” and the result 
will be a Fixed_SMT object. 

3.4 Design methodology 
Fig. 6 shows the system design flow employed in this paper. 
The isolated model training was done using floating-point 
arithmetic. The decoder was rewritten in C++ using the fixed-
point class. And then we need know the quantization of the 
floating-point variables involved in SMT decoding in advance, 
and then use the fixed-point objects to represent and replace 
the floating-point variables and simulate the original floating-
point arithmetic operations according to the principles of 
fixed-point arithmetic operations. At last, it is necessary to test 
and adjust whether the quantization and precision of the fix-
point class can make the system word correctly. 

Decoder of SMT system 
described using Fixed_SMT

Simulate floating-point operations 
in accordance with fixed-point 

Model training using 
floating-point arithmetic

Analyse quantization of 
floating-point variables 

Test and adjust 
the quantization 

and precision 

Fig. 6. System design flow   

4. EXPERIMENTS 
In this paper, we implement a fixed-point decoder based on 
Xiong et al. (2006)’s system Bruin [14] as our experimental 
decoder. 

In this section, we present the experiments based on PC and 
mobile terminal to compare the performance of the fixed-point 
and the floating-point decoder. 
4.1 experiment based on PC 

We make the experiment with Chinese-to-English translation. 
The training corpus consists of 239K sentence pairs. We used 
the 2002 NIST MT Evaluation test set as our development 
corpus, and used the 2005 NIST MT Evaluation test set as out 
test corpus. 

For the language model, we used SRI Language Modeling 
Toolkit [15] to train a 4-gram language model with modified 
Kneser-Ney smoothing [16]. Our evaluation metric is BLEU [17]

as calculated by the script mteval-v11b.pl with its default 
setting. 

Table 2 shows that the fixed-point decoder can ensure the 
quality of translation. However, the fixed-point decoding is 
only a little slower than the floating-point decoding, so we can 
predict that the translation speed can be much improved when 
we deploying the fixed-point decoder on mobile terminals 
without FPUs. 
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Processor Memory Operating system 
Quad-Core AMD 

Opteron Processor 8347 
HE, 1.9 GHz 60 GB 

Red Hat Enterprise 
Linux AS X64 
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Decoder Translation time BLEU 
Floating-point decoding 8978.74 s 0.3035 

Fixed-point decoding 9066.57 s 0.3035 

SMT systems have a significant requirement for mobile 
terminals in memory, but we are limited to the hardware 
condition, we decide to make the experiment to compare the 
arithmetic performance between fixed-point and floating-point 
for a mobile terminal so that we can indirectly verify the faster 
translation speed of the fixed-point decoder of SMT systems 
on mobile terminals. 

4.2 experiment based on mobile terminal  
We make 10,000,000 loop operations, and then select 
frequency multiplication and accumulation of SMT decoding 
as arithmetic calculation type in the experiment based on 
mobile terminal. 

Table 4 shows that arithmetic performance of fixed-point is 
faster 135.6% than that of floating-point. Therefore, we come 
to a conclusion that this approach can improve translation 
speed of SMT decoding when deploying the fixed-point 
decoder on the mobile terminal without FPUs. 
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Processor Memory Operating system 
Intel ARM920T 

PXA27X, 312MHz 64 MB 
Windows Mobile 6.0 

Standard 
�����
��
���������	
��
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 Operation time 
Floating-point  14.75 s 

Fixed-point  6.25s 



5. SUMMARY AND FUTURE WORK 
Based on the analysis of current SMT systems on mobile 
terminals, we draw a conclusion that embedded processors 
without FPUs restrict decoding speed. By analyzing the 
difference between floating-point and fixed-point, and 
associated arithmetic operations algorithm, we propose a 
fixed-point approach of SMT decoding to solve the bottleneck. 
This approach improves decoding speed of SMT systems on 
mobile terminals with weak ability in floating-point arithmetic 
operations significantly so that SMT decoding on mobile 
terminals don’t have to rely on the FPU. SMT decoding can be 
finished by using a universal CPU on mobile terminals. It 
improves translation speed and ensures good quality of 
translation. 

The fixed-point approach is compatible with most on 
mobile terminals with different processors and SMT decoders 
so that it is convenient for users to adjust the parameter 
configuration of the fixed-point class and satisfy different 
application requirements. 

In addition, this approach also can be applied to speech 
recognition, audio & video decoding and other related fields. 
In our future work, some experiments would be made to verify 
the validity in these fields. 
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