
Muti-Path Shift-Reduce Parsing with Online Training

Wenbin Jiang, Hao Xiong, Qun Liu
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, CAS

{jiangwenbin, xionghao, liuqun}@ict.ac.cn

Abstract: In this paper we describe an enhanced shift-reduce parsing method which differs from the traditional

transition-based model in two ways: first, we maintain multiple transition paths after each transition step, in order

to alleviate the serious risk of going astray for the only-one-path transition; second, we adopt the online training

algorithm rather than the classical training-after-extraction method, to obtain more robust discriminativity of the

classifier for transition decision. Experiments on the Tsinghua Chinese Treebank show that the enhanced model

gains obvious improvement over the baseline. And in the CIPSevaluation task, a neat implementation without

tricks could achieved nearly the state-of-the-art performance.

Keywords: Parsing, Transition-based, Online trainingÄu3�Ôö�õ´£?8�é{©Û�.ñ©R,=Ê,4+¥I�Æ�O�EâïÄ¤�U&E?n:¢�¿
{jiangwenbin, xionghao, liuqun}@ict.ac.cnÁ �: �©£ã
�«Or.�£?8�é{©Û�."�DÚ�£?8��{�'§kü���U?µ1�§T�.ÏL3z�=£Ú���3õ�G�¢yõ´G�=£§��ü´»£?8�wÍü$
G�=£��ØÇ¶1�§��DÚ�3Ä��¢~þÔö©aì��{§T�.æ^3�Ôö��ªN!©aìëê§��l�Ôö�ª�	
�õ�©ÛG�lS��°��ûüUå"3�uä¥þ�¢�y¢§ùü�U?üÑwÍJp
©Û5U"�+·��XÚØ/Ï?Û[�E|§�E3CIPSµÿ¥��
���*�¤1"'�:é{©Û,£?8�,3�Ôö

1 Introduction

Most of the current state-of-the-art statistical parsers [Collins, 1999; Charniak, 2000;
Petrov et al., 2006] are founded on the PCFG paradigm or its variants. Although well defined
in the linguistic sense and usually giving encouraging performance, they suffer much from the
high complexity of search space, fromO(n3) to O(n5), leading to really lower processing
speed especially for longer sentences.

Along with the popularity of discriminative methods in recent years, several classifier-
based deterministic models are developed for dependency- and constituent parsing [Yamada
and Matsumoto, 2003; Nivre et al., 2006; Sagae and Lavie, 2005]. Since these models perform
parsing by making a series of shift-reduce decisions, they are also categorized as the transition-
based method. Typically, in such models a stack is maintained to contain the parsed fragments
so far, and a queue to contain the unprocessed tokens. Ashift action moves the front of the

0 1 N 1 N 0 1 N

0

shift reduce

Figure 1: Classical shift-reduce parsing.

queue to the top of the stack, while areduceactions merge several topmost elements of the stack
into a larger fragment. A discriminative classifier, trained on a bunch of instances extracted
from a treebank, is used to make the shift-reduce decisions.Previous experiments show that
such models give very high processing speed that is linear tothe length of input sentences, as
well as acceptable performance that is not obvious worse than the state-of-the-art.

Besides the high processing speed, however, the greedy search procedure also brings
higher risk of leading the transition to go astray. Since only one pair of stack and queue is
maintained, only one transition path is traced during decoding, which means that eachstate,
composed of a stack-queue pair and the current configuration, transfers in deterministic fash-
ion to the next state. This indicates that any decision errorwill leads to a wrong parse. After
adapting the shift-reduce paradigm to constituent parsing[Sagae and Lavie, 2005], Sagae
and Lavie [2006] further proposed a best-first search strategy to balance accuracy and speed,
which uses a prior heap to contain many possible states and each time expands the topmost
state with the highest probability. Although achieving obvious performance improvement at
the cost of decoding slowdown, this strategy is complicatedand has a very small room for
further improvement.

In this paper, we describe a more simpler improvement strategy, multi-path shift-reduce
parsing, which maintains multiple transition paths duringdecoding by retaining several best de-
rived states after each expansion. It can be seen as a discriminative version of the Generalized-
LR parsing [Tomita, 1990], and is more applicable than the best-first strategy for the down-
stream NLP applications, such as n-best or forest generation for machine translation. In ad-
dition, while training the classifier we adopt the online training algorithm which updates pa-
rameters immediately at each decision error. Compared withprevious training-after-extraction
method which trains the classifier on the instances extracted from the treebank, online training
captures more robust capability to escape from wrong transition paths. Experiments on the
Tsinghua Chinese Treebank show that these two improvement strategies bring obvious perfor-
mance improvement. And in the CIPS evaluation task, a neat implementation without tricks
could achieved nearly the state-of-the-art performance.

In the rest of the paper, we first present the classical shift-reduce parsing algorithm (section
2) and its multi-path variant (section 3). After discussingthe online training algorithm (section
4), we show the experiments (section 5).

/wLB /nP /wRB /m /n

np-1 np-1

np-1

/wLB

/nP /wRB

/m /n

np-1 np-1

np-1

*np-0

Binarization

Figure 2: Binarization for a sub-tree from TCT.

2 Shift-Reduce Parsing

The idea of shift-reduce parsing is borrowed from compiler theory. It has been applied to
constituency parsing, for example by Sagae and Lavie [2006]. Given an input sentence, it per-
forms a left-to-right scan, and at each step chooses the bestaction according to the predication
of the classifier. The action can beshift or one of the|NT| reduceactions. Here|NT| is the
amount of the non-terminals, and eachreducecorresponds to a non-terminal. Theshift action
shifts the current word onto the stack, while areduceaction merges several items on the top of
the stack and then replaces them with their combination. Figure 1 shows an example ofshift
andreduceoperations where thereduceaction isreduce-Z.

To reduce the computational complexity, we follow the tradition of previous works [John-
son, 1998; Sagae and Lavie, 2006] to perform binarization tothe treebank before training, and
unbinarization to the parses after decoding. The purpose ofbinarization is to decompose the
productions with more than two children, which can be solvedby inserting pseudo internal
non-terminals to such productions. To maintain the applicability of head-driven probabilis-
tic training or discriminative training with head lexicon features, the treebank must be head-
annotated, and the newly-created internal non-terminals must have the same head lexicon as
the original productions. Each pseudo non-terminals are marked with a special symbol, so as
to enable the unbinarization to the binarized parses after decoding. Figure 2 gives an example
of binarization.

Another transformation we perform to the treebank is reduction of single-branches.
Single-branch is a necessary of Chomsky’s grammatical theory, but it brings a trouble to the
decoding, where some mechanism must be established to terminate the derivation of single
nodes. Especially in the shift-reduce paradigm, we have to introduce a new kind of operations
which reduce only one node into another. The purpose of single-branch reduction is to de-
crease the operation set so that only binary reduce operations are sufficient for decoding. We
use an example in Figure 3 to explain the procedure of single-branch reduction. The original
tree is on the left, it has a single-branch composed of two nodes which are marked by shaded
frames. The reduction operation replaces these two nodes bytheir combination, and labels the
combined node with the combination of the non-terminals of the original two nodes.

The treebank consists only binary branch nodes after binarization for multi-branch nodes

/t

/d /t

tp-1

tp-0

/wP dlc- Reduction /t

/d /t

tp-0

/wP dlc- | tp-1

Figure 3: Single-branch reduction for a tree from TCT.

Algorithm 1 Multi-path shift-reduce parsing.
1: Input: POS-tagged word sequencex

2: (ini · stack, ini · queue)← (Ø, x)
3: insertini into V

4: for step← 1 .. 2|x| − 1 do
5: for eachstate in V do
6: for eachaction that can be applied tostate do
7: next← applyaction to state

8: insertnext into BUF

9: V← K best states ofBUF

10: Output: the tree derived from the best state inV

and reduction for single-branches. Therefore, only ashift action and a series of binaryreduce
actions are needed for decoding. We omit the decoding algorithm here since the classical shift-
reduce parsing is simple and well-known.

3 Multi-Path Shift-Reduce

We use an intuitive strategy, beam-search, to enhance the traditional shift-reduce parsing.
Rather than maintaining one pair of stack and queue and performing deterministic shifting
or reducing, a beam-search-style decoder resorts to several pairs of stack and queue to retain
multiple transition paths. At each transition step, a series of current states are maintained by
the stacks and queues. To obtain the series of following states, all the current states emit their
possible derivations by conducting theshfit or reduceoperations given by the classifier, and
then the top best ones are selected out of all these derivations. Obviously, the total bunches
of transitions for multi-path shift-reduce parsing is2N − 1, whereN represents the sentence
length. SupposeK best states are retained at each transition, the time complexity of the multi-
path shift-reduce parser is thenO(KN).

Algorithm 1 depicts the procedure of multi-path shift-reduce parsing. The arrayV is
used to contain the series of best states. Line4− 9 perform the2N − 1 bunches of transitions.
Line 9 chooses theK best candidates as the series of following states.

Algorithm 2 Online training for multi-path shift-reduce parsing.
1: Input: Training examples(xi, yi)
2: ~α← 0
3: for t← 1 .. T do
4: for i← 1 .. N do
5: (ini · stack, ini · queue)← (Ø, xi)
6: insertini into V

7: for step← 1 .. 2|xi| − 1 do
8: for eachstate in V do
9: for eachaction that can be applied tostate do

10: next← applyaction to state according to~α
11: insertnext into BUF

12: V← K best states ofBUF

13: if the oracle next state determined byyi falls out ofV then
14: update~α
15: break
16: Output: Parameters~α

4 Online Training

A classical shift-reduce parser is trained on instances extracted from a treebank, where
each instance is composed of a transition type and a set of features. Resort to a stack and a
queue, an extractor simulates the shift-reduce parsing procedure for each tree in the transformed
treebank, and outputs the instance at each transition. A batch-processed classifier is then trained
on the instance set, and used to determine the transition choice during parsing.

Different from the batched, training-after-extraction manner for training a traditional shift-
reduce parser, the online training for multi-path parsing decodes the sentences in the treebank
one by one, and updates related parameters when the oracle next state falls out of the candidate
list generated according to the current parameters. Compared with the batched training, the
online training procedure usually costs more time since several iterations of decoding should be
conducted across the training corpus. However, just thanksto the nearly exhaustive attempting
and updating, online training achieves more robust discriminativity of escaping from wrong
transition paths.

We describe the training procedure formally in Algorithm 2,where a simple perceptron
algorithm [Collins, 2002] is adopted for parameter tuning.In each training instance(xi, yi), xi

is a token sequence andyi is the constituent tree over it. The cascaded loop in line 3-4iterates
for T iterations across theN instances in the training corpus. For each instance, the loop in
line 7 performs multi-path shift-reduce decoding forxi according to the current parameters~α.
At any of the2|xi|−1 steps during decoding, it terminates the decoding procedure and updates
the related parameters if the oracle next state determined by yi falls out of the candidate list
V. To alleviate overfitting, the/averaged parameters0strategy is used in this algorithm. All
theTN parameter sets, each of which is exported after each decoding, are averaged to obtain
smoothed parameters. The iteration countT is chosen to maximize the performance on the
developing set.

System Validating F1%
offline+single 82.7
online+single 83.4
offline+multiple 85.3
online+multiple 88.1

Table 1: Performances of the series of parsers.offline and online respectively indicate the
offline training and the online training, whilesingleandmultiple indicate the single-path tran-
sition and the multi-path transition. For the multi-path shift-reduce parser, we simply set the
beam as 32.

Setting Headed F1%
online+multiple 80.3
online+multiple+post 84.0

Table 2: Performance comparation between systems before and after post-process with hand-
written head-recovery rules.

5 Experiments

We perform experiments on the training portion of the Tsinghua treebank provided by the
organizers. Instances containing only one word are deletedsince they don’t provide any syntax
information. Out of the filtered corpus, 500 trees are randomly extracted as the development
set and another 500 as the validating set, with the remainingas the training set. Before the
binarization, an additional operation should be performedto select one head for the spans with
multiple heads, to facilitate the design of features with head information. In all experiments we
simply choose the rightmost heads for such spans, and use some simple hand-written rules to
recover the eliminated heads after parsing. As the development set and the validating set both
account for a small proportion, the parsers trained on this training set are also used to parse the
final test set. With the simple averaged perceptron algorithm a series of parsers are built, all of
which are offline trained/online trained single-path/multi-path shift-reduce parsers.

Table 1 shows the performances of the four systems on the validating set. Offline+single
is a simple reimplement version of [Sagae and Lavie, 2006] but with an offline perceptron al-
gorithm for traning. Contrast to offline+single, online+single uses the online training algorithm
described in section 4 and achieves a little improvement. Instead of maintaining only a single
transition path after each expansion, multi-path shift-reduce parsing maintains multiple transi-
tion paths during decoding and, consequently, captures more capability to escape from wrong
transition paths. This is validated by the performances of the X+multiple systems, which are
significantly higher than the X-singles.

By observing the treebank, we design some linguistic rules to recovery the head words
eliminated in the preprocessing. For example: fromvp-01(vp vp), we can capture the follow-
ing rule:

childsize==2&&child[0]==child[1]&&child[0][0]==’v’ ⇒ head word=”01”

In addition to linguistic rules, some special rules were learned by statistic approach. Head-word

which appears more than half of its children’ s occurrences was added into the rule table. In
testing, we firstly used heuristic rules and then searched rule table for adjusting the head-word.
Result showed in Table 2 indicates that the post-process achieves significant improvement over
baseline in head-word evaluation.

Acknowledgements

We are grateful to the hard work of evaluation organizers in Tsinghua University and
Northeastern University, and especially, we show our special thanks to Yumei Li in Tsinghua
University for her generous help. This work was supported byNational Natural Science
Foundation of China, Contracts 60603095 and 60736014, and 863 State Key Project No.
2006AA010108.

References

[Charniak2000] Eugene Charniak. 2000. A maximum-entropy-inspired parser. InProceedings of NAACL.

[Collins1999] Michael Collins. 1999. Head-driven statistical models for natural language parsing. InPh.D. Disser-
ation.

[Collins2002] Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. InProceedings of the EMNLP, pages 1–8, Philadelphia, USA.

[Johnson1998] Mark Johnson. 1998. Pcfg models of linguistic tree representations. InComputational Linguistics.

[Nivre et al.2006] Joakim Nivre, Johan Hall, Jens Nilsson, Gulsen Eryigit, and Svetoslav Marinov. 2006. Labeled
pseudoprojective dependency parsing with support vector machines. InProceedings of CoNLL, pages 221–
225.

[Petrov et al.2006] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate, compact,
and interpretable tree annotation. InProceedings of ACL.

[Sagae and Lavie2005] Kenji Sagae and Alon Lavie. 2005. A classifier-based parser with linear run-time complex-
ity. In Proceedings of IWPT.

[Sagae and Lavie2006] Kenji Sagae and Alon Lavie. 2006. A best-first probabilistic shift-reduce parser. InPro-
ceedings of COLING/ACL.

[Tomita1990] Masaru Tomita. 1990. The generalized lr parser/compiler - version 8.4. InProceedings of COLING.

[Yamada and Matsumoto2003] H Yamada and Y Matsumoto. 2003. Statistical dependency analysis using support
vector machines. InProceedings of IWPT.

