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Abstract: In this paper we describe an enhanced shift-reduce parsatigooh which differs from the traditional
transition-based model in two ways: first, we maintain nplétitransition paths after each transition step, in order
to alleviate the serious risk of going astray for the onlg-qurath transition; second, we adopt the online training
algorithm rather than the classical training-after-esticm method, to obtain more robust discriminativity of the
classifier for transition decision. Experiments on the @him Chinese Treebank show that the enhanced model
gains obvious improvement over the baseline. And in the Gi®8uation task, a neat implementation without
tricks could achieved nearly the state-of-the-art pertoroe.
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1 Introduction

Most of the current state-of-the-art statistical parse@olljns, 1999; Charniak, 2000;
Petrov et al., 2006] are founded on the PCFG paradigm or itanta. Although well defined
in the linguistic sense and usually giving encouragingqgremfince, they suffer much from the
high complexity of search space, frof(n?) to O(n°), leading to really lower processing
speed especially for longer sentences.

Along with the popularity of discriminative methods in reteears, several classifier-
based deterministic models are developed for dependendye@nstituent parsing [Yamada
and Matsumoto, 2003; Nivre et al., 2006; Sagae and Lavieg]2@ince these models perform
parsing by making a series of shift-reduce decisions, thewlso categorized as the transition-
based method. Typically, in such models a stack is maintaimeontain the parsed fragments
so far, and a queue to contain the unprocessed tokerghifffaction moves the front of the



Wo Wi... WN Wi... WN Wo Wi... WN

Queue Queue Queue
Stack | Stack Stack
a. Original state b. After shift c. After reduce
(Z—XY)

Figure 1: Classical shift-reduce parsing.

gueue to the top of the stack, whilesaduceactions merge several topmost elements of the stack
into a larger fragment. A discriminative classifier, trainen a bunch of instances extracted
from a treebank, is used to make the shift-reduce decisiBrsvious experiments show that
such models give very high processing speed that is linedwettength of input sentences, as
well as acceptable performance that is not obvious worsettiestate-of-the-art.

Besides the high processing speed, however, the greedghsparcedure also brings
higher risk of leading the transition to go astray. Sinceyamie pair of stack and queue is
maintained, only one transition path is traced during dempdvhich means that eadttate
composed of a stack-queue pair and the current configuratemsfers in deterministic fash-
ion to the next state. This indicates that any decision emthleads to a wrong parse. After
adapting the shift-reduce paradigm to constituent pargiggae and Lavie, 2005], Sagae
and Lavie [2006] further proposed a best-first search gjyai® balance accuracy and speed,
which uses a prior heap to contain many possible states adtisae expands the topmost
state with the highest probability. Although achieving iolmé performance improvement at
the cost of decoding slowdown, this strategy is complicated has a very small room for
further improvement.

In this paper, we describe a more simpler improvement glyataulti-path shift-reduce
parsing, which maintains multiple transition paths duidegoding by retaining several best de-
rived states after each expansion. It can be seen as a disatiie version of the Generalized-
LR parsing [Tomita, 1990], and is more applicable than th&t-fiest strategy for the down-
stream NLP applications, such as n-best or forest genarfdiomachine translation. In ad-
dition, while training the classifier we adopt the onlindrinag algorithm which updates pa-
rameters immediately at each decision error. Comparedpsgtvious training-after-extraction
method which trains the classifier on the instances extidoten the treebank, online training
captures more robust capability to escape from wrong tianspaths. Experiments on the
Tsinghua Chinese Treebank show that these two improvertratggies bring obvious perfor-
mance improvement. And in the CIPS evaluation task, a negleimentation without tricks
could achieved nearly the state-of-the-art performance.

Inthe rest of the paper, we first present the classical ehiftice parsing algorithm (section
2) and its multi-path variant (section 3). After discussihg online training algorithm (section
4), we show the experiments (section 5).
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Figure 2: Binarization for a sub-tree from TCT.

2 Shift-Reduce Parsing

The idea of shift-reduce parsing is borrowed from compheoty. It has been applied to
constituency parsing, for example by Sagae and Lavie [2(B&En an input sentence, it per-
forms a left-to-right scan, and at each step chooses thebtsh according to the predication
of the classifier. The action can Bhift or one of thefNT| reduceactions. HeréIN'T| is the
amount of the non-terminals, and eaekducecorresponds to a hon-terminal. Thleift action
shifts the current word onto the stack, whilesaluceaction merges several items on the top of
the stack and then replaces them with their combinationurEigl shows an example shift
andreduceoperations where theeduceaction isreduce-Z

To reduce the computational complexity, we follow the ttiadi of previous works [John-
son, 1998; Sagae and Lavie, 2006] to perform binarizatidghddreebank before training, and
unbinarization to the parses after decoding. The purposnafization is to decompose the
productions with more than two children, which can be sollgdnserting pseudo internal
non-terminals to such productions. To maintain the apbiiita of head-driven probabilis-
tic training or discriminative training with head lexicoadtures, the treebank must be head-
annotated, and the newly-created internal non-terminaist inave the same head lexicon as
the original productions. Each pseudo non-terminals and&edawith a special symbol, so as
to enable the unbinarization to the binarized parses afferding. Figure 2 gives an example
of binarization.

Another transformation we perform to the treebank is redaocbf single-branches.
Single-branch is a necessary of Chomsky’s grammaticakryhéat it brings a trouble to the
decoding, where some mechanism must be established tontgarthe derivation of single
nodes. Especially in the shift-reduce paradigm, we havettoduce a new kind of operations
which reduce only one node into another. The purpose ofesibginch reduction is to de-
crease the operation set so that only binary reduce opesadie sufficient for decoding. We
use an example in Figure 3 to explain the procedure of sibglach reduction. The original
tree is on the left, it has a single-branch composed of twegsaethich are marked by shaded
frames. The reduction operation replaces these two noddgelycombination, and labels the
combined node with the combination of the non-terminaldefdriginal two nodes.

The treebank consists only binary branch nodes after et for multi-branch nodes
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Figure 3: Single-branch reduction for a tree from TCT.

Algorithm 1 Multi-path shift-reduce parsing.
1. Input: POS-tagged word sequence
2. (ini - stack, ini - queue) «— (O, x)
3: insertini into V
4: for step — 1..2Jz| —1do
5 for eachstate in V do
6: for eachaction that can be applied tetate do
7
8

next < applyaction to state
: insertnext into BUF
9 V «— K best states dBUF
10: Output: the tree derived from the best stateVin

and reduction for single-branches. Therefore, ondhidt action and a series of binargduce
actions are needed for decoding. We omit the decoding #hgotiere since the classical shift-
reduce parsing is simple and well-known.

3 Multi-Path Shift-Reduce

We use an intuitive strategy, beam-search, to enhancedti¢i@anal shift-reduce parsing.
Rather than maintaining one pair of stack and queue andrpdrfg deterministic shifting
or reducing, a beam-search-style decoder resorts to $@ara of stack and queue to retain
multiple transition paths. At each transition step, a seoiecurrent states are maintained by
the stacks and queues. To obtain the series of followingsstatl the current states emit their
possible derivations by conducting tkkfit or reduceoperations given by the classifier, and
then the top best ones are selected out of all these derigatiObviously, the total bunches
of transitions for multi-path shift-reduce parsingQRi&’ — 1, whereN represents the sentence
length. Suppos& best states are retained at each transition, the time caitypdd the multi-
path shift-reduce parser is the{ K N).

Algorithm 1 depicts the procedure of multi-path shift-reduparsing. The array is
used to contain the series of best states. Uire9 perform the2 NV — 1 bunches of transitions.
Line 9 chooses thd( best candidates as the series of following states.



Algorithm 2 Online training for multi-path shift-reduce parsing.
1: Input: Training examples$z;, y;)
2.a+0
3fort—1..Tdo

4: fori«—1..Ndo

5: (ini - stack, ini - queue) «— (D, x;)

6: insertini into' V

7: for step — 1 ..2|x;| — 1 do

8: for eachstate in V do

9 for eachaction that can be applied tetate do
10: next < applyaction to state according tay
11: insertnext into BUF
12: V < K best states dBUF
13: if the oracle next state determineddgyfalls out of V then
14: updated’
15: break

16: Output: Parametersl

4 Online Training

A classical shift-reduce parser is trained on instancesaetetd from a treebank, where
each instance is composed of a transition type and a set tofrésa Resort to a stack and a
gueue, an extractor simulates the shift-reduce parsireeproe for each tree in the transformed
treebank, and outputs the instance at each transition.ohfmbcessed classifier is then trained
on the instance set, and used to determine the transitidoectiaring parsing.

Different from the batched, training-after-extractionmmar for training a traditional shift-
reduce parser, the online training for multi-path parsiegatles the sentences in the treebank
one by one, and updates related parameters when the oratkate falls out of the candidate
list generated according to the current parameters. Cadpaith the batched training, the
online training procedure usually costs more time sincersiterations of decoding should be
conducted across the training corpus. However, just themtkee nearly exhaustive attempting
and updating, online training achieves more robust disoativity of escaping from wrong
transition paths.

We describe the training procedure formally in Algorithmwere a simple perceptron
algorithm [Collins, 2002] is adopted for parameter tunilmgeach training instancder;, y;), =;
is a token sequence amgdis the constituent tree over it. The cascaded loop in lingt@rdtes
for T iterations across th& instances in the training corpus. For each instance, theilwo
line 7 performs multi-path shift-reduce decoding fgraccording to the current parameteéts
At any of the2|z;| — 1 steps during decoding, it terminates the decoding proeealud updates
the related parameters if the oracle next state determiped falls out of the candidate list
V. To alleviate overfitting, the“averaged parametérsstrategy is used in this algorithm. All
the TN parameter sets, each of which is exported after each degaaliea averaged to obtain
smoothed parameters. The iteration collinis chosen to maximize the performance on the
developing set.



System Validating F1%
offline+single 82.7
online+single 83.4
offline+multiple 85.3
online+multiple 88.1

Table 1: Performances of the series of parseasffline and online respectively indicate the

offline training and the online training, whikngleandmultipleindicate the single-path tran-
sition and the multi-path transition. For the multi-pathftsteduce parser, we simply set the
beam as 32.

Setting Headed F1%
online+multiple 80.3
online+multiple+post 84.0

Table 2: Performance comparation between systems befdrafeer post-process with hand-
written head-recovery rules.

5 Experiments

We perform experiments on the training portion of the Tsirgtreebank provided by the
organizers. Instances containing only one word are defgieg they don’t provide any syntax
information. Out of the filtered corpus, 500 trees are rangi@rtracted as the development
set and another 500 as the validating set, with the remaiaénthe training set. Before the
binarization, an additional operation should be performoesklect one head for the spans with
multiple heads, to facilitate the design of features withchmformation. In all experiments we
simply choose the rightmost heads for such spans, and use somple hand-written rules to
recover the eliminated heads after parsing. As the devatapset and the validating set both
account for a small proportion, the parsers trained on thisihg set are also used to parse the
final test set. With the simple averaged perceptron algordhseries of parsers are built, all of
which are offline trained/online trained single-path/rpkth shift-reduce parsers.

Table 1 shows the performances of the four systems on thaatialg set. Offline+single
is a simple reimplement version of [Sagae and Lavie, 2006 an offline perceptron al-
gorithm for traning. Contrast to offline+single, onlinergle uses the online training algorithm
described in section 4 and achieves a little improvemersted of maintaining only a single
transition path after each expansion, multi-path shifiiee parsing maintains multiple transi-
tion paths during decoding and, consequently, captures gapability to escape from wrong
transition paths. This is validated by the performancesiefX+multiple systems, which are
significantly higher than the X-singles.

By observing the treebank, we design some linguistic rudestovery the head words
eliminated in the preprocessing. For example: fager01(vp vp ) we can capture the follow-
ing rule:

childsize==2&&child[0]==child[1]&&child[0][0]=="v' = head word="01"

In addition to linguistic rules, some special rules werered by statistic approach. Head-word



which appears more than half of its children’ s occurrencas added into the rule table. In
testing, we firstly used heuristic rules and then searchiedable for adjusting the head-word.
Result showed in Table 2 indicates that the post-processvashsignificant improvement over
baseline in head-word evaluation.
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