Vol.10 No.4 J. of Comput. Sci. & Technol. July 1995

Efficient Realization of Frequently Used
Bijections on Cube-Connected Cycles

Liu Zhiyong (XI| & B8), Liu Qun (X #f) and Zhang Xiang (3¢ #¥)

Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100080
Received December 12, 1993.

Abstract

CCC has lower hardware complexity than hypercube and is suited for cur-
rent VLSI technology. LC-permutations are a large set of important permuta-
tions frequently used in various parallel computations. Existing routing algo-
rithms for CCC cannot realize LC-permutations without network conflict. We
present an algorithm to realize LC-permutations on CCC. The algorithm con-
sists of two periods of inter-cycle transmissions and one period of inner-cycle
transmissions. In the inter-cycle transmissions the dimensional links of CCC
are used in a “pipeline” manner and in the inner-cycle transmissions the data
packets are sorted by a part of its destination address. The algorithm is fast
(O(logy N)) and no conflict will occur.

Keywords: Hypercube, cube-connected cycles, linear complement permu-
tation, routing algorithm, conflict, complexity.

1 Introduction

Hypercﬁbe is a promising topology for parallel and distributed processing sys-
tems. In a hypercube of size N = 2™, n links are connected to each node. The
hardware complexity of hypercube increases quickly as n increases. CCC (Cube-
Connected Cycles) is a feasible substitute of hypercube, in which constant(3) links
are connected to each nodell%. A set of algorithms (Descend and Ascend) on hyper-
cube can be simulated on CCC without significant degradation of performance[w].

Permutation is the communication pattern in a multiprocessor system by which
each processor communicates with one and only one processori®®l, The traditional
hypercube routing algorithm is the naive routing algorithm, which uses the n di-
mensions of hypercube in a low to high or high to low order, and the n bits of the
destination address are compared with the n bits of the current node address in
order to determine if the message should be sent or just remain in the same node.
Naive routing algorithm can be easily simulated on CCC. However, permutations
which can be passed by the naive algorithm on a hypercube or CCC without conflict
are very limited. In such a permutation the destination addresses on each subcube
must constitute a complete residue system (CRS)45l. LC-permutations are a large

This research is supported by China National “863” High Technology Project.

No. 4 Efficient Realization of Frequently Used Bijections 299

set of permutations frequently used in various parallel computation tasks in im-
age processing, pattern recognition, numerical analysis, signal processing, and other
scientific and engineering computations, and they include BPC-permutations as a
subset!35~711 Ag an instance, the data alignment requirements in the non-linear
parallel storage schemes, known as XOR-schemes, are LC-permutations®®11, Un-
fortunately, although CCC is less complex in hardware than hypercube, existing
routing algorithms (Descend or Ascend) for CCC cannot realize such a large set of
LC-permutations without conflict.

If no conflict occurs in the transmission process, the commumcatlon will be more
efficient in terms of both message delay time and hardware utilization. Various al-
gorithms have been proposed for LC (as well as BPC) permutations on hypercubes
and multistage interconnection networks (MINs)[1:2:57-912-14] [this paper, we
give a conflict-free routing algorithm for LC-permutations on CCC, based on a cor-
responding routing algorithm on hypercubel®!, with the same time complexity. This
is the first conflict-free routing algorithm for such a large set of permutations (LC-
permutations) on CCC.

2 Some Definitions

Consider a multiprocessor system with N = 2" nodes. Each node M has an
address Myp—-1Mp—92 - -M1MYQ. ‘

In a hypercube, there is a link between node A and node B if and only if the
addresses of A and B differ in exactly one bit position k£ (0 < k < n). We call this
link the k-th dimensional link. And we call the collection of all the k-th dimensional
links the sheaf k.

In CCC, the address of node M is divided into two parts:

M = (Mu,My), Mu =Mp_1"*"Mp_y, My =my_1...m0’

where u + y = n, and y is the smallest integer for which y + 2¥ > n. We call
the u bits M, the cube-address of node M, while the y bits M, the cycle-address. -
Each node M of CCC has three ports: F, B, and L (Forward, Backward, and
Lateral). F' is connected to node (M,, (M, + 1)mod2¥), B is connected to node
(M, (My — 1)mod2Y) and L is connected to node (M, @ 2Mv, M,). The last link
does not exist when M, > u. All the nodes with the same M,, are linked as a cycle
by F-B links, and all the cycles are linked as a u-cube by the L-L links.

In a Linear-Complement (LC) permutation, the source address S = sp_1--- g
and the destination address D = d,_1 - - dp can be expressed as follows:

D'=TxS"oC"
where T is a nonsingular n X n binary matrix:
th—1,n—-1 Tn-imn-2 -+ tan_10
T = tn—2,n—1 tn—2,n—2 U tn—Z,O

to,n—1 to,n—2 e too

300 ‘ J. of Comput. Sci. & Technol. Vol.10

and C is a binary vector. Thus any bit in the destination address can be expressed

as:
n—1

di=2ti,jxsj®ci, foro<i<n
j=0

where the operations x and & are the logic operations AND and XOR (exclusive-or).

3 The Conflict-Free Routing Algorithm for LC-Permu-
tations on CCC

3.1 Simulate Hypercube Algorithm on CCC

Existing algorithms for hypercube which can be simulated on CCC are those in
the algorithm class of DESCEND or ASCEND0],

Algorithm DESCEND

/* this algorithm is for each node M = m,_;,m,_2,- -, mg of the system */
BEGIN

FOR k :=n—1DOWNTO 0

DO .

compute and communicate with node M @ 2*;

ENDDO

END.

The ASCEND algorithm is similar to DESCEND, but the loop control is changed
to:

FORk:=0TOn—-1

Naive routing algorithm is in the class of DESCEND (or ASCEND). In each time
unit, the k-th bit of the destination address of the data packet is compared with the
k-th bit of the address of the current node, and then the algorithm decides whether
the data packet is transmitted along the k-th dimensional link. Unfortunately, the
LC-permutations cannot be implemented simply by just using DESCEND or AS-
CEND without network conflict.

Theorem 1. The LC-permutation cannot be implemented by an algorithm in
the class of DESCEND without conflict.

Proof. Suppose the LC-permutation can be implemented by an algorithm in the
class of DESCEND without conflict.

Consider a data packet P. Assume A(P,t) is the address of packet P at time
unit ¢, then we have:

A(P, 0) =85 = Spn—18n—-2 """ S0, A(P, n) =D= dn_ldn_g ce d().
From the algorithm DESCEND, we know that at each time unit ¢, the data packet
can only be transmitted along the k-th dimensional link, while k = n—t. So A(P,t)
only differs from A(P,t — 1) in bit position k. Therefore we can know:

A(P, 1) = dn_lsn_g *+-80.

No. 4 Efficient Realization of Frequently Used Bijections 301

If there is no conflict in time unit ¢ = 1, we have:
VA(P,0) # A(P',0), A(P,1) # A(P',1).

That is V(sn—18n-2-50) # (Sh_15n_2"*80), (dn=15n—2 - S0) # (dfy_185_5 - 5h).
If: s;=sj,for0<i<n-—2 then: Vs,_1 # s,_;,dn—1 #d,_;.
Because we assume that: d,,_1 = E;-‘;é tn—1,j X 8§ @ Cp_1,
so we have: (d,—1®d,_;) = ;-’;5 tn—1,j X (s; ® 5})
Because: s; = s, for 0<i<n -2,
so we have: (dn_1®d;,_1) = th—1n-1 X (Sn—1 D sh_;).
Because: Vs,_1 ®s;,_; #0,dn_1 ®dj,_; # 0,50 th_1,-1 #O0.

Because, for arbitrary LC-permutation, we can say the transformation matrix 7°
is nonsingular, but we can not say t,_1,—1 # 0, so when t,_1 ,—1 = 0, conflicts will
occur at time unit t =1. O

For example, let us consider an 8 x 8 LC-permutation whose transformation
matrix is:

The destination addresses for nodes 000, 001, 010, 011, 100, 101, 110, 111 are: 000,
110, 010, 100, 001, 111, 011, 101 respectively. At time unit ¢ = 1, these data packet
will be transmitted to nodes: 000, 101, 010, 111, 000, 101, 010, 111. Thus conflicts
occur.

3.2 Conflict-Free Routing Algorithm for LC-Permutations on Hy-
percubes '

An algorithm has been proposed for LC-permutations on hypercubesl®. The
routing includes two stages: First, an algorithm called CRS-rearranging is used, and
it takes at most n — 1 steps; Second, naive routing algorithm is used, and it takes
at most n steps.

This algorithm needs precomputations. The precomputation needs to be exe-
cuted once for a set of permutations which have a common transformation matrix,
and generates two vectors called jump[0 : n — 1] and buddy[0 : n — 1]. The two
vectors will be used in the CRS-rearranging and should be loaded into two shift
registers in all the nodes before routing. One may refer to [5,9] for the algorithm
to produce the vectors jump and buddy, which is carried out off- line. We also
include the algorithm producing the vectors jump and buddy in Appendix in this
paper for self-containing. Note also that for BPC-permutations, which are a subset
of LC-permutations, a simpler method can be used to decide the two vectors, since
BPC-permutations have simpler (and more regular) transformation matrix. One
may refer to [7] for this.

We present the algorithm in the following:

Algorithm LC1 /* routing LC-permutation on hypercubes */
/* This algorithm is for each node M = m,_;,mp_s, -, mg of the system */

302 J. of Comput. Sci. & Technol. Vol.10

BEGIN
/* The following is CRS-rearranging */
FOR k:=n—1DOWNTO 1
DO '
IF jump[k] = 0 /* Transmitting only along the necessary dimensions */
THEN
IF dy © dpuaay(x) =1
THEN |
Send data packet to and receive data packet from node M @ 2%;
ENDIF;
ENDIF;
ENDDO;
/* The following is naive routing */
FOR!:=0TOn-1
DO
IF dy #my
THEN
Send data packet to and receive data packet from node M @ 2};
ENDIF
ENDDO
END.

In the above algorithm, D = d,_1---dp is the destination address of the data
packet on the current node M. The algorithm is conflict-free and takes time O(n)!®.

3.3 Conlflict-Free Routing Algorithm for LC-Permutations on CCC

Although Algorithm LC1 is not in the class of DESCEND or ASCEND, we can
see it is similar in terms of the order of the dimensions used in each routing step.
They differ essentially in that different bits are used as the routing bit. Here we
develop an algorithm for conflict-free routing on CCC, which is an adaptaf:ion of
LC1. In this algorithm, certain auxiliary transmission steps are carried out in the
cycles to arrange the message packets in each cycle so that conflict will not occur
either inside any cycle or between cycles.

Algorithm LC2 /* routing LC-permutation on CCC */
/* This algorithm is for each node M = my,,_1,Mmy_2,---,mg of the system */
BEGIN

/* The following is the first period — inter-cycle transmission */

FOR t:=0 TO 2v+! —1

DO
IF (M, <u)A(2¥ <t+ M, <2vtl)
THEN
IF jump[M, +y| =0
THEN
IF da,+y © douddy[M,+y) =1
THEN

send data packet to and receive data packet from node (M, @ 2Mv, M,);
/* Exchange data packets with the Lateral neighbor */ '

No. 4 Efficient Realization of Frequently Used Bijections 303

ENDIF;
ENDIF;
ENDIF;
send data packet to node (M,, (My — 1)mod2¥) and
receive data packet from node (M, (M, + 1)mod2¥);
/* Shift around the cycles */
ENDDO;
/* The following is the second period — inner-cycle transmission */
FORp:=0TO 2¥7! —1
DO
IF Mymod2 =1
IF M, #2% -1
THEN
send Dy to and receive D, from node (M,, My + 1);
/¥ Get destination cycle address from the Forward neighbor */
IF D, > D),
THEN
send data packet to and receive data packet from node (M, M, + 1);
/* Exchange data packets with the Forward neighbor */
ENDIF
ENDIF
ENDIF
IF Mymod2 =0
THEN
IF M, #0
THEN
send Dy to and receive D, from node (M., M, — 1);
/* Get destination cycle address from the Backward neighbor */
IF D, < D),
THEN
send data packet to and receive data packet from node (M,, M, — 1);
/* Exchange data packets with the Backward neighbor */
ENDIF
ENDIF
ENDIF
ENDDO
/* The following is the third period — also inter-cycle transmission */
FOR q:=0 TO 2v+! —1
DO
IF (My <u)A(0<qg— M, <2Y)
THEN
IF dp, 1y # M, 4y
THEN
send data packet to and receive data packet from node (M, @ 2Mv, M,);

/* Exchange data packets with the Lateral neighbor */
ENDIF

send data packet to node (M,, (M, + 1)mod2¥) and
receive data packet from node (M, (M, — 1)mod2¥);

304 J. of Comput. Sci. & Technol. Vol.10

/* Shift around the cycles */
ENDIF
ENDDO
END.

In the above algorithm, the 2¥ groups of data (2“ messages in each group) use
the u cube dimensions in a “pipelined” manner. After a certain initiative period (2¥
steps), all the u dimensions are fully used concurrently for inter-cycle transmission.
It is obvious that the above algorithm takes 2¢%! 4 2v—1 4 2¥+1 = O(2¥) = O(n)
steps.

4 Validity

In order to prove that Algorithm LC2 is valid, we need to prove that the packets
do arrive at their destinations correctly after the transmission process in LC2, and
that no conflict will occur in any transmission step (either inside each cycle, or
between cycles). For ease of understanding, we present the proof in a way that the
“intermediate” addresses of the transmission of each period in LC2 are compared
with those in LC1, and show that this will result in correct transmission of the
message packets. ’

Suppose a data packet P whose source address is S and destination address is

D.
Algorithm LC2 consists of three loops, and the control statements are:

FOR t:=0.TO 2v¥*t1 — 1,
FOR p:=0TO 2¥! — 1, and
FOR q:=0TO 2v+1 — 1,

Algorithm LC1 consists of two loops, and the control statements are:

FOR k :=n—1 DOWNTO 1, and
FORI!I:=0TO n—1.

Corresponding to Algorithm LC2, the whole process of Algorithm LC1 can be
split into three periods:

First: FOR k:=n—1DOWNTO y
Second: FOR k:=y—-1DOWNTO 1
FOR!:=0TOy—-1

Third: FOR!:=yTOn-1

Let’s use functions A(k = z), A(l = z), A(t = z), A(p = z), A(qg = z) to record
the addresses of the data packet P in each loop of the algorithms, and use A(k =
0),A(l = n),A(t = 2v+1),A(p = 2¥71),A(q = 2¥*!) to record the addresses of the
data packet P after each loop of the algorithms.

Lemma 1. In the first period of Algorithm LC2 the transmissions along the
lateral links happen only when: Sy +2¥ —u+1<t < 5, +2Y, and:

{Ay(t:5y+2y—u+w)=n—$_y:k_y Vz:1<z<u+l

At=8Sy+2Y —u+z)=Auk=n-1)

No. 4 Efficient Realization of Frequently Used Bijections 305

Theorem 2. Fach data packet will be transmitted to its destination after Algo-
rithm LC2.

Because the formal proofs of the above lemma and theorem are very long, we
just give them in the appendix. Here, for ease of understanding of the proof as well
as the algorithm itself, we explain briefly the effect of each period of the routing
procedure.

e Firstly, it should be noticed that a permutation of size of 2 = 2% x 2¥ is
not necessarily 2¥ permutations of size of 2*. The purpose of the first and
the second periods in the algorithm is to rearrange the 2" packets into 2¥
permutations of size of 2. The transmission along the lateral links in the first
period is not to match the high order u bits step by step as in the traditional
DESCEND routing process.

e Secondly, the shift around in each cycle in the first period is to rearrange the
2Y packets in each cycle simultaneously so that the packets will be aligned
with the dimensions on which they need to be transmitted to their lateral
neighbors.

e Thirdly, the purpose of the second period is to sort the packets in each cycle so
that the 2¥ packets on the 2* cycles will constitute 2¥ permutations passable
without network conflict. With the above two periods being completed, the
third period of the algorithm is simply a series of naive routing of the 2¥
permutations (with some shift arounds being carried out in each cycle to align
the packets with the correct dimensions as those in the first period).

Theorem 3. No conflict will happen in Algorithm LC2.

Proof. It is easy to know that no conflict will happen in the second period of
Algorithm LC2. And the proof of the third period is similar to that of the first
period, so here we just prove that no conflict will happen in the first period.

In the first period, no conflict will happen in the process of shift around the cycles,
so we just need to consider the transmission along the lateral links. Consider a lateral
link which connects the nodes (M,, M) and (M., M,). We know M., = M, @ 2Mv,

Suppose the data packets in the two nodes are P and P’, then we have:

Ay(P,t) = Ay(P',t) = A,

Au(P,t) = Ay (P t) ® 24

From Lemma 1, we know the transmissions along the lateral links happen when
Sy+2¥y—u+1<t< S, +2Y and we have:

Ay =n—z—y =k—y, Au(t = Sy+2¥—u+z) = Au(k =n—=z), Ve : 1 <z < u+l,
so: Ay(Pk=n—2z)= A,(P,k=n—1x)® 2%,

Because: Ay(P,k=n—-z)=A,(P,k=n—1z)=25,,

we have: A(P,k=n —z)= A(P,k=n—z)® 241V,

and because: Ay +y =n—z =k, we know that at the time k = n — z in Algorithm
LC1, these two data packets are at the two sides of a k-th dimensional link of
hypercube. The condition of the transmission in Algorithm LC1 is:

(Jumplk] = 0) A ((dx ® dbuday(x)) = 1)

The condition of the transmission in Algorithm LC2 is:

306 J. of Comput. Sci. & Technol. Vol.10

(Fump[My + y] = 0) A ((di @ dpuddy[M,+y]) = 1)
We can see the conditions are the same. Because no conflict will happen in Algorithm
LC1, the case is the same in Algorithm LC2. O

5 Conclusions

Various algorithms have been proposed for LC-permutations on hypercubes as
well as through MINs. But no algorithm has been proposed for LC-permutations
on CCC. In this paper we present a routing algorithm for the realization of LC-
permutations on CCC. The feature of the algorithm is that, no conflict will occur at
each routing step. The routing is completely distributed for inter-cycle transmission,
as each node can decide its transmission based only on the destination of its message
packet; and, only an exclusive-or operation of two bits is needed in each routing step.
Within each cycle, only an arithmetic comparison in each routing step is needed to
sort the messages due to the simple interconnection scheme within each cycle. The
whole routing process is fast and simple. The algorithm proposed in this paper can
realize more permutations frequently used in various computations on CCC without
network conflict than existing algorithms for CCC. The routing algorithm can be
easily implemented in both hardware and software.

References

[1] Boppana R, Raghavendra C S. On self-routing in Benes and shuffle exchange networks. In
Proc. of 1988 International Conference on Parallel Processing, Aug. 1988, pp. 196-200.

[2] Boppana R, Raghavendra C S. Optimal self-routing of linear complement permutations in
hypercubes. In Proc. of the 5th Distributed Memory Computing Conference, April 1990, pp.
800-808.

[3] Kim K, Kumar V K P. Parallel memory systems for image processing. In Proc. of the 1989
Conference on Computer Vision and Pattern Recognition, pp. 650-659.

[4] Lee K Y. On the rearrangeability of 2(log, N —1) —1 stage permutation networks. IEEE Trans.
Comput., 1985, C-34(5): 412-425.

[5] Liu Zhiyong, Li X. Routing linear complement permutations on hypercubes. Technical Report
TR92-01, Dept. of Computing Science, Univ. of Alberta, Edmonton, Alberta, Canada.

[6] Liu Z, Li X, You J. On storage scheme for parallel array access. Supercomputing’92, July 1992,
pPp. 282-291.

[7] Liu Z, You J. Conflict-free routing for BPC-permutations on synchronous hypercubes. Parallel
Computing, 1993, 19: 323-342.

[8] LiuZ, You J, Li X. Conflict-free routing on hypercubes. In Proc. of the International Conference
of Computers and Information, May 1992, pp. 153-158.

[9] Liu Z, Li X. On the implementation of LC-permutations on hypercubes. In Proc. of Interna-
tional Symposium for Young Investigators, Feb. 1994.

[10] Franco P Preparata, Jean Vuillemin. The cube-connected cycles: A versatile network for par-
allel computation. Communications of the ACM, 1981, 24(5): 300-309.

[11] Raghavendra C S, Boppana R. On methods for fast and efficient parallel memory access. In
Proc. of the International Conference on Parallel Processing, Vol. I, pp. 76-83.

No. 4 Efficient Realization of Frequently Used Bijections 307

[12] Raghavendra C S, Boppana R. On self-routing in Benes and shuffle exchange networks. IEEE
Trans. on Computers, 1991, 40(9): 1057-1064.

[13] Sengupta A, Zemoudeh K. Self-routing algorithms for strongly-regular multistage interconnec-
tion networks. Journal of Parallel and Distributed Computing, 1992, 14: pp. 187-192.

[14] Zemoudeh K, Sengupta A. Routing frequently used bijections on hypercube. In Proc. of the
5th Distributed Memory Computing Conference, April 1990, pp. 824-832.

Appendices:

A.1 Proof of Lemma 1.
In the first period of Algorithm LC1, we have:
Ayt +1) = (Ay(t) — 1)mod2¥
So we get:
Sy —t 0<t<S,
Aty =< Sy +2¥ -t Sy+1<t<S, +2¢
Sy+2vtt —¢t S, +2v+1 <t <2t
That means:
Sy 0<t<LSs,
Ayt)+t=S S, +2¥ Sy+1<t<S, +2v
Sy+2vtl S, +2v +1 <t <2t

‘Because the transmissions through the lateral links happen only when:
(2 < t+ M, < 2v+1),

and at time unit ¢, A,(t) = M, that means only when:
S,+1<t<8,+2,

inter-cycle transmission can happen, and because the transmissions through the lateral links

happen only when: M, < u, that means: S, +2¥ — ¢ < u, so we have:
Sy+2¥—u+1<t< S, +2Y and .
At=8S,+2%—u+z)=S,+2 —t=u—-z=n—z—y, Vz:1<z<u+l.

Then let’s consider the equation:
A(t=5S,+2Y—u+z)=A,t=0)=A,(k=n—2)=8,, Vr:1<z<u+1.

Whenz =1, A,(t =S, +2Y —u+z)=A,(t=0)=A,(k=n—1z)=S,, and we know:
if (jump[My + y] = 0) A ((dr, +y © dbuddying, +41) = 1), '
then A,(t =S, +2¢Y —u+z+1) = A, (t =S, +2Y —u+1z)®2My,
else A,(t=S,+2Y —u+z+1)=A,(t=5,+2Y —u+2z).

Because:
My+y=Ayt)+y=5,+2Y—t+y=S,+2Y—(Sy+2—u+z)+y=uv—z—y=n-z,

so: if (jump[n — 2] = 0) A ((dn—z ® dbuddyln—s]) = 1),
then Ay(t =8, +2Y —u+z+1)=A,(t=5,+2Y —u+z) 92" Y,
else A,(t=S5,+2Y —u+z+1)=A,(t=5,+2¢Y —u+z).

From Algorithm L.C1, we know:
if (]ump[n - (E] = 0) A ((dﬂ-—w 52 dbudd'y['n,—z]) = 1)7
then A(k=n—-z—-1)=A(k=n—z)® 2™ 7,
else Alk=n—z—-1)= Ak =n—z).

Consider A, (k) — the left u bits of A(k), that means:
if (Jumpln — 2] = 0) A ((dn—o ® dbuddyin—s]) = 1),
then Ay(k=n—-z—-1)=A(k=n—-z)p27~*V,
else Ay(k=n—-z—-1)=A,(k=n—=z).

So if the equation is true for z, it is true for = + 1, thus the equation is true for all z : 1 <

r<wu O

308 J. of Comput. Sci. & Technol. Vol.10

A.2 Proof of Theorem 2.
Because we know:
Alk=n—-1)=A(t=0)= S, and
All=n) =
so we just need to prove: A(qg=2¥t1)= A(l=n)=D.
We will prove in turn that after each period the address of P is the same in the two
algorithms:
At =2v"1) = A(p=0) = A(k =y — 1),
Alp=2¥"1)=A(g=0) = A(l=vy),
Alg=2¥*1)=A(l=n—-1)=D.
It is easy to find out that:
Ayk=y—-1)=Ayk=n—-1)=S
Au(l = y) = Au(k =Y- 1):
Ay(l=y) =Ay(l=n-1)=D,
Au(p=2v"1) = Au(p = 0).
And in the first and third periods of Algorithm LC2, the shifts around the cycles repeat for
2¥+1 times, exactly twice of the length of the cycle. So we have:
A (t-—2y+1)_A (t=0)=
Ay(g=2"") = Ay(g =0).
So we just need to prove in turn that:
At=29")=A,(k=y—-1)=S
Ay(p=2v"1)= Ayl =),
Ayg=2v"Y=A,(l=n—-1).
Let’s consider the first period in Algorithm LC2.
From Lemma 1, we know the lateral links happen only when: S, +2¥ —u+1<t < S, +2Y,
so:
A (t=2"1)=A,(t=8,+2¥ +1)
When z = u + 1, we have:
At=8Sy+2+1)=A(k=n—u—1)= A (k=y - 1),
and the proof of the first period is done.
Then let’s consider the second period.
At the end of the second period of Algorithm LC1, the cycle address of each data packet
is the same as its destination cycle address:

Ay(l=y)=Ay(l=n—-1)=D,,

In the second period of both algorithms, the transmissions of the data packets always happen
between the nodes with the same M, just within the cycles of the CCC. And at the
beginning of the second period, the addresses of the data packets in both algorithms are
the same. Thus at the beginning of the second period the cycle addresses (D,) of the data
packets in each cycle of CCC are a permutation of the integers of 0 to 2¥ — 1. One may also
cite Theorem 2 in [14] to know that the Dys in each cycle really constitute a CRS mod 2¥.

The second period of Algorithm LC2 is just a sorting process of the 2¥ data packets
on each cycle. So we know the cycle address of each data packet at the end of the second
period in Algorithm LC2 is exactly its destination cycle address, just the same as that in
Algorithm LC1. And the proof of the second period is done.

The proof of the third period is similar to that of the first period. We omit the proof
here. O

No. 4 Efficient Realization of Frequently Used Bijections 309

A.3 The Algorithm for Finding the Two Vectors for a Type of Permutations

Algorithm Buddy-Jump
/* To decide if a dimension can be jumped over, or which bit(s) should be used

for routing */

BEGIN
FOR k:=n—1DOWNTO 1
DO
IF T4, is singular
THEN
jumplk] := 0;
IF ter =1
THEN
Look for an i such that ¢ < k and ; = 1,
buddylk] := ¢; '
Tl = Th,k;
Tk, ‘= Tk,i}
ELSE
buddylk] := n;
Thk = Thk;
ENDIF
Modify T according to R;
ELSE
jumplk] := 1;
ENDIF
ENDDO
END.

In the algorithm, T is the transmission matrix of the LC-permutation, R is the inverse
matrix of T, Ty is the k x k submatrix at the bottom-right of 7. The precomputation
needs to be carried out once for a set of LC-permutations with the common transmission
matrix and takes time O(n?) in the worst case.

Liu Zhiyong received his M.S. degree from Northwest Telecommunication Institute and
Ph.D degree from the Institute of Computing Technology, The Chineses Academy of Sciences
in 1983 and 1987, respectively. He worked as a visiting scholar and a postdoctor fellow in
U.S.A. and Canada from 1988 through 1992. He is currently a Professor in the Institute of
Computing Technology, The Chinese Academy of Sciences. His research interests include
parallel algorithms and architectures, interconnection networks, and artificial intelligence.

Liu Qun received his M.S. degree from the Institute of Computing Technology, The
Chinese Academy of Sciences in 1992. He is currently an Assistant Professor in the Institute
of Computing Technology, The Chinese Academy of Sciences. His research interests include
parallel processing and artificial intelligence.

Zhang Xiang is a Professor in the Institute of Computing Technology, The Chinese

Academy of Sciences. He is the director of the 2nd department of the Institute. His research
interests include multimedia technology and systems, and parallel processing.

