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Abstract

Sequence tagging is the basis for multiple applica-
tions in natural language processing. Despite suc-
cesses in learning long term token sequence de-
pendencies with neural network, tag dependencies
are rarely considered previously. Sequence tagging
actually possesses complex dependencies and in-
teractions among the input tokens and the output
tags. We propose a novel multi-channel model,
which handles different ranges of token-tag depen-
dencies and their interactions simultaneously. A tag
LSTM is augmented to manage the output tag de-
pendencies and word-tag interactions, while three
mechanisms are presented to efficiently incorpo-
rate token context representation and tag depen-
dency. Extensive experiments on part-of-speech
tagging and named entity recognition tasks show
that the proposed model outperforms the BiLSTM-
CREF baseline by effectively incorporating the tag
dependency feature.

1 Introduction

Sequence tagging problems have obtained much attention
especially in the natural language processing community.
Given a sequence of words, sequence tagging aims to predict
a linguistic tag for each word such as the part-of-speech tag.
Many natural language processing tasks can be cast into this
problem, which include part-of-speech (POS) tagging, text
chunking, and named entity recognition (NER) etc.

Among various frameworks, neural network based ap-
proaches prevail in these years, which take the benefits of rep-
resentation learning and achieve state-of-the-art performance
without massive hand-crafted feature engineering. [Collobert
et al., 2011] first introduced neural network for sequence tag-
ging: a context window takes the sequences as input, then
followed by a feed-forward neural network. When inferring
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The, credit, card; yous wos n'ts want; tog dog without;g .qq
DT NN NN PRP MDRB VB TO VB IN

We, 'll, have; tos dos withouts .;
PRP MD VB TO VB RB

Figure 1: Illustration of Tag Dependencies.

tags, an independent tag prediction is used, where typically
each token in a sentence is considered independently. Af-
terward, sequence tagging was further improved by recurrent
neural network based methods, which is able to successfully
capture the correlation and long term dependencies of tokens
[Chen er al., 2015; Lample et al., 2016; Zhang et al., 2015;
Chen et al., 2016; Vaswani et al., 2016; Liu et al., 2016;
Zheng et al., 2017]. Nevertheless, under the isolated tag cri-
terion, tag dependencies are neglected. As [Collobert et al.,
2011] discloses, tag dependencies actually exist in a sentence.
To overcome tagging dependency problem (the loss of tag-
ging information in isolated tag criterion), a transition matrix
between two consecutive tokens is introduced. In particular, it
is formalized as a CRF layer [Lafferty ez al., 2001]. A global
optimal tagging sequence is inferred over the entire tagging
space. Significant gains are observed, comparing with the
isolated tag criterion [Collobert ef al., 2011].

However, transition matrix in CRF layer is usually position
independent and only captures the neighboring tag dependen-
cies, which are typically first order dependencies. Longer
ranges of dependencies are not well managed, let along the
interactions between the tag sequence and the word sequence.
For instance, in figure 1, the part-of-speech tag of the 10"
word “without” in the first sentence is dependent on the 37¢
tag, where a preposition (IN) is associated with a noun phrase
(NN), while it becomes adverb (RB) in the second sentence.

To overcome aforementioned problems, and capture dif-
ferent ranges of tag dependencies and word-tag interactions,
in this paper, we propose a multi-channel model with three
variants. The multi-channel model learns the word tagging
by leveraging both the word context representation and tag
dependency feature. In particular, we introduce a tag LSTM
to tackle the long range tag dependencies and word-tag in-
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teractions. Then three different mechanisms are explored to
incorporate the tag dependency feature: shared tag LSTM
through integrating both features and isolated tag LSTM
through feature integrated prediction or joint tagging deci-
sion.

To sum up, our contributions are as follows:

e We identify the problems of different ranges of tag de-
pendencies and word-tag sequence interactions in se-
quence tagging tasks.

e A novel multi-channel model is proposed to manage the
longer ranges of tag dependencies and the interactions
between tag sequence and word sequence.

e Extensive experiments on three datasets verify the effec-
tiveness of the proposed multi-channel model.

2 Background

Given a sentence r = wi, ws, ..., Wy, the aim of sequence
tagging is to figure out the ground truth of tag sequence y =
t1,ts,...,ty. For example, in POS tagging, the input tokens
are words, and each word is annotated with a POS tag, while
in named entity recognition, the allocated tag for each word
indicates if a word is part of a named entity.

BiLSTM-CRF model prevails in recent years and achieves
state-of-the-art performance on sequence tagging [Chen et
al., 2015; Lample et al., 2016; Zhang et al., 2015; Ma and
Hovy, 2016; Chen et al., 2016]. We will use BILSTM-CRF
model as our baseline. The model consists of mainly three
layers:

¢ Embedding layer maps a word into embeddings, a dis-
tributed representation of words;

e Word LSTM layer, namely a bi-directional LSTM
[Graves and Schmidhuber, 2005], utilizes a left-to-right
and a right-to-left LSTM layer to extract word context
representations;

e Inference layer employs a CRF structure to infer the
most likely label for each word.

2.1 Embedding Layer

The embedding layer converts the one-hot encoding of each
word w; into a vector representation e,,, through an embed-
ding lookup table and a character level LSTM [Lample ef al.,
2016].

2.2 Word LSTM Layer

Word LSTM layer sequentially extract word context repre-
sentation h; for each word w;. Long Short-term Memory
Networks (LSTM) have been shown to capture long-range
dependencies, incorporating with a memory-cell to keep track
of information and several gates to control the interaction (in-
put, forget, and output) with the memory cell. We choose the
standard implementation[Hochreiter and Schmidhuber, 1997]
with both the left-to-right order and the right-to-left order. It

generates a left context vector h,,, and a right context vec-

— . .
tor h,,, for word w;. With both the left and the right context
vector, word context representation h; is obtained by concate-

nating them together: h*°"¢ = [h,,., h,,,].
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2.3 Inference Layer

Typically, a Conditional Random Field (CRF) [Lafferty et
al., 2001] is employed as inference layer to infer a tag t;
for each word w; given the word context representation se-
quence h¥°rd . h¥°rd. It learns the strong dependencies
across output labels [Lample et al., 2016] instead of making
independent tagging decisions for each output. In particular,
a transition scores matrix A is introduced. A; ; models the
transition score from tag ¢ to tag j. Thus, the score of a tag
sequence ¥y given an input sentence x is defined as:

N N
S(.’l?,y) = ZAti,ti+1 + Z Pi,tw
=0 i=1

where P is the scores matrix computed by a softmax over
all possible tags given word context representation sequence
hS@q hseq

1 hiyt

Then the probability for the tag sequence y is computed by
a softmax over all possible tag sequences:

exp {s(z,y)}

> exp{s(z,y)}’

y' ey

pylz) =

where Y denotes all possible tag sequences for sentence x.
When training, [Collobert et al., 2011] maximize the log-
probability of the golden tag sequence:

log(p(ylx)) = s(z,y) —log(Y _ exp {s(x,y)}),

where the latter term can be computed in linear time taking
advantage of the associativity and distributivity on the semi-
ring.

Note that the transition score matrix A is position indepen-
dent. It only models bigram interactions between two suc-
cessive tags [Lample et al., 2016; Pei et al., 2014]. Longer
ranges of tag dependencies and the interactions between word
sequence and tag sequences are still not well managed.

3 Multi-channel Model

In this part, we describe a multi-channel model to address
different ranges of tag dependencies and word-tag sequence
interactions. BILSTM-CREF constructs feature representation
through a word LSTM. We refer it as single-channel model,
as word LSTM is the only feature learning channel for mak-
ing tagging decisions, whereas the multi-channel model lever-
age both word context representation and tag dependency fea-
ture together.

As mentioned previously, transition score matrix in
BiLSTM-CRF model partially breaks independent tagging
assumption within two consecutive tags. However, tag de-
pendencies also exist in longer ranges as shown in figure 1.
Although a simple higher order matrix can handle longer tag
dependencies, it not only takes high computation cost, but
also suffers from data sparsity. Therefore, in multi-channel
model, we employ a tag LSTM to naturally handle differ-
ent ranges of tag dependencies, add another feature learning
channel, and further interact with word context. The model
infers each tag based on both the word context representation
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Figure 2: Multi-channel Models. The red blocks are LSTM layers, while the green ones are softmax layers. The yellow circles denote the
embedding layer. The yellow information flow is the information channel.

and the tag dependency feature. In particular, for each word
w;, the corresponding tag is chosen based on both the word
feature and the previous predicted tags. The tag sequence
probability over the word sequence is then formulated as:

N
pylz) = Hp(tz'lr,t«:)-

To incorporate the tag LSTM into the model, two methods—
a shared tag LSTM and an isolated LSTM—are introduced in
the follow sections.

3.1 Model I: Shared Tag LSTM

In multi-channel model, the tagging decision is made sequen-
tially in a left-to-right order with respect to the word con-
text and tagging history. Motivated by the text generation of
neural translation model [Cho et al., 2014; Sutskever et al.,
20141, we directly convert the chosen tag ¢; of each word into
a tag embedding e;,, and then inject e;, into a tag LSTM.
As tag dependency feature and word context representation
flow together sharing a single LSTM, we name it shared tag
LSTM. Figure 2a illustrates the multi-channel model using
shared tag LSTM. A bi-directional LSTM is also employed
to learn the word context representation h;.

Tagging inference is made independently based on the
shared tag LSTM output h$"e7¢4. The probability of tag ¢; is
computed by a softmax over all tag sets 7' based on hihared:

exp (hfhared) "

/Z exp (hsz,:hared)t2 ’
t, €T

p(t2|$7 t<i) =

where (+) is an affine transformation.

3.2 Isolated Tag LSTM

Shared tag LSTM is able to learn long term tag dependen-
cies theoretically. However, in shared tag LSTM, the word
context representation and tag dependency feature are jointly
conveyed via a single channel. As a result, they might in-
terfere with each other. Intuitively, word context representa-
tion plays a major role in tagging decision, and tag dependen-
cies provides an auxiliary effect. With the shared tag LSTM
scheme, the minor factor—tag dependencies—might be dom-
inated by the major factor—word context. Consequently, tag
dependencies cannot be modeled appropriately.
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Hence, we design an isolated tag LSTM to separate both
feature learning channels as shown in figure 2b. Word context
representation and tag dependency feature are learned inde-
pendently. With an isolated tag LSTM, we have two mecha-
nisms to incorporate tag dependency features: one is feature
integrated prediction, where both features are integrated be-
fore making tagging decision; the other is joint tagging de-
cision, where each feature outputs tagging probabilities and
then votes to make final tagging inference.

Model II: Feature Integrated Prediction
For isolated tag LSTM, it takes in the concatenation of tag
embedding and word embedding [e;,, e,,,] for each word w;,
resulting with a tag dependency feature hi*°, which enables
tag LSTM to handle different ranges of tag dependencies and
word-tag interactions purely.

One straightforward way to utilizing hi*® and word context
representation h%’°" is to integrate them before prediction, so
called feature integrated prediction (FIP) ( figure 3 ):

h: = Wisohz:so 4 Wwordhy)ord.
The tag probability is computed through a softmax over h;.

Model III: Joint Tagging Decision

Inspired by ensemble averaging, to further enhance the learn-
ing of different ranges of tag dependencies, we explore an-
other approach to sufficiently utilize word context represen-
tation and tag dependency feature, where both features make
independent tagging probability estimations. Then those two
probabilities are merged by a weighted average to make the
final joint tagging decision (JTD). The tagging probability is
defined as:

p(ts|z, t<i)

LN pltiz) + (1= \) - pltilte:)

_, exp (h;uord)ti Y exp (hgs(,)ti

tlZ exp (h%uord)t; /Z: exp (héso)t; ’
JET t, €T

where ) is the probability controlling the importance of each
tagging estimation, and (-) is affine transformation. p(t;|x)
is the tagging probability computed by word LSTM output
hwerd and p(t;|t-;) is tagging probability based on tag de-
pendency feature h*°. In this formulation, when the gate A
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Figure 3: Model II: Feature Integrated Prediction.

Corpus [ Data | Sentences [ Tokens | NEs
train 96,750 5,958,471 | 282,851
PD dev 1,000 60,147 2,944
test 20,336 1,240,171 | 57,298
train 14,987 204,567 23,376
CoNLLO3 | dev 3,466 51,578 5,906
test 3,684 46,666 5,620
train 38,219 912,344 -
wWSJ dev 5,527 131,768 -
test 5,462 129,654 -

Table 1: Data statistics.

is close 1, the prediction probability is forced to ignore the tag
LSTM and tagging decision is made entirely on word LSTM.
While when A is near to 0, the prediction probability approx-
imates p(t;|t<;), tag LSTM plays a primary role.

The gate )\ learns to effectively balance the involvement of
tag LSTM and word LSTM when making the final tagging
decision according to different scenarios. It is dynamically
computed according to h?*® and h¥°r<:

AN=o (h’ZL:SO7 h;uord) ;

where o is logistic sigmoid function, (-) is affine transfor-
mation. When h¥°"¢ fails to capture enough word context
information and the gate X is lower than 0.5, the model can
rely more on the probability estimation from tag dependency
feature h%*°. What’s more, similar to ensemble averaging
method, the model variance can be reduced theoretically. In
figure 4, h’*° and h*°"? first computes \ as prediction con-
fidence and the tagging probabilities. Then, the final tag-
ging probability is computed through an weighted average
between p(t;|x) and p(t;|t<;).

Although tag LSTM and word LSTM are relatively inde-
pendent, the two components are actually combined softly by
A, thus they can be trained jointly with respect to p(¢;|z, t<;).

Tag LSTM extends in a left-to-right order and lacks the
right context information. To enhance its prediction ability,

we concatenate the right context vector h,,, ( generated by
word LSTM ) with the tag LSTM output when computing the
tagging probability. In particular, p(t;|t<;) is modified as:

R
exp (h?’o7 hUH)t

p(tl|t<1) = ; <_i
> exp (hzso,th ,
teT R
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Figure 4: Model III: Joint Tagging Decision (JTD).

4 Experiments

4.1 Data Sets

We study the tag dependencies mainly on two tagging tasks.
One is part-of-speech (POS) tagging, where each word is al-
located with a POS tag. The other is named entity recogni-
tion (NER), a classical task in the field of natural language
processing, where each word is assigned a tag indicating if it
belongs to part of a NE and which kind of NE. Table 1 list the
data statistics of different corpus.

Part-of-Speech Tagging

We use the Wall Street Journal (WSJ) portion of Penn Tree-
bank [Marcus et al., 1993] for POS tagging task. We adopt
the standard data set splits: section 0-18 as training data, 19-
21 as development data and section 22-24 as test data.

Named Entity Recognition

We also conduct NER experiments on two corpora, a Chinese
corpus, People’s Daily (PD)! and an English corpus, CONLL
2003 corpus. For People’s Daily, the data set is divided as
96750 sentences for training, 1000 sentences for validation,
and 20336 sentences for test. CONLL 20037 is a collection of
news wire articles from the Reuters Corpus. We use the stan-
dard dataset split. The datasets contain four different types
of named entities: locations, persons, organizations, and mis-
cellaneous entities. A significant difference to POS tagging
is that the number of NE tags are much less than POS tags.
Another difference is that, in a sentence, most words are not
belong to any named entities, leading NER a challenge task
for learning tag dependencies. Following [Collobert e al.,
2011], we use the BIOES (Beginning, Inside, Outside, End,
Singleton) tagging scheme. NE label represents PER (Per-
son), ORG (Organization), etc. For a word, B-label denotes
the beginning of a NE, I-label indicates that it is inside a NE
but not the beginning, O means that it is not a part of a NE,
E-label denotes the end of a NE, and S-label means singleton.

4.2 Experimental Settings

We use unigram character embedding as input of character
level LSTM to learn the word representation, then the learned
word representation together with the unigram word embed-
ding are take as input of word LSTM for POS tagging and
NER. The dimensionality of word embeddings is 100 for Chi-
nese, and 300 for English. We adopt golden segmentation and
random embedding initialization for Chinese. None of other

"http://icl.pku.edu.cn/icl_groups/corpustagging.asp
“https://www.clips.uantwerpen.be/conll2003/ner/
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Figure 5: Performances on Different Lengths
Corpus | Model [ F-score Model [ Accuracy
BiLSTM-CRF 88.17 [Giménez and Marquez, 2004] 97.16
PD Model 1 89.83 [Toutanova er al., 2003] 97.27
Model IT (FIP) 90.47 [Manning, 2011] 97.28
Model I (JTD) 920.79 [Collobert et al., 2011] 97.29
[Collobert et al., 2011] 89.59 [Santos and Zadrozny, 2014] 97.32
[Lin and Wu, 2009] 83.78 [Shen et al., 2007] 97.33
[Lin and Wu, 2009]* 90.90 [Sun, 2014] 97.36
[Passos et al., 2014] 90.05 [Spgaard, 20111 97.50
[Passos et al., 2014]* 90.90 [Ma and Hovy, 2016] 97.55
[Luo et al., 2015]*+gaz 89.90 BiLSTM-CRF 9750
CoNLLO3 | [Luo et al., 2015]*+gaz+linking 91.20 Model I 97.34
[Chiu and Nichols, 2015] 90.69 Model II (FIP) 97.53
[Chiu and Nichols, 2015]* 90.70 Model III JTD) 97.59
[Lample et al., 2016] 90.94 . ;
[Ma and Hovy, 2016] 9121 Table 3: POS Tagging Accuracy on WSJ.
BiLSTM-CRF 88.83
Model I 89.16 i i
Model II (FIP) 2038 forrpatlon. In general, isolated tag LSTM (model II&IIT)
Model I (JTD) 90.20 achieves better performances, compared with the shared tag
BiLSTM-CRF+char 90.94 LSTM (model I). It confirms that isolated LSTM is able to
Model L+char 90.57 ture long term tag dependencies better than shared LSTM.
Mode! ILschar (FIP) 0082 ;ap tIlre dong e:}rln ag depent et;mes e etr ! ans grte p
Model IT+char (JTD) 91.22 n shared one, the word context representation and tag depen-

Table 2: F-score for Named Entity Recognition. * indicates the us-
age of external labeled data.

manual features, like bi-gram or tri-gram word features are
included. To avoid over-fitting, we adopt dropout strategy on
the embedding layer with a rate of 0.5. The size of LSTM
hidden state is set to 100. Training is done on every sam-
ple through stochastic gradient descent (SGD) with a learn-
ing rate of 0.005. To avoid gradient explosion problem, we
set a gradient clipping strategy with a threshold of 1.0. For
the proposed multi-channel models, we use the negative log
likelihood objective function for training. When testing, we
use beam-search to inference the best tag sequence and the
beam size is set to 20.

4.3 Experimental Results

Main Performance

For NER, we report standard F-score to measure the perfor-
mance. Table 2 presents performances for NER on both En-
glish and Chinese. Note that we don’t leverage any external
resources. We achieved a performance better than most previ-
ous published works and comparable with the model of [Luo
et al., 2015], where NER and entity linking tasks are jointly
modeled, and a lot of hand-engineered features are incorpo-
rated including spelling features, WordNet clusters, Brown
clusters, POS tags, chunks tags, as well as stemming and ex-
ternal knowledge bases like Freebase and Wikipedia.

Both shared tag LSTM and isolated tag LSTM outper-
form BiLSTM-CREF baseline without leveraging character in-
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dency representation are conveyed through a single channel,
where the two factors might interfere with each other.

For POS tagging, Table 3 lists tagging accuracies of dif-
ferent systems. Both variants of isolated tag LSTM (model
[I&IIT) of multi-channel model perform better than BiLSTM-
CRF baseline while shared tag LSTM (model ]) is a bit lower.
The gains on POS tagging is less than on NER. One possible
difference lies in the NE tag sparsity, which lead NER more
difficult than POS tagging. According to statistics in our cor-
pus, only 7.4% words belong to named entities for Chinese
NE and 21.2% for English NE. It is more difficult for the
baseline system to capture long range discontinuous NE tag
dependencies, but the discontinuous NE tag dependencies can
be handled well by our proposed model. However, for POS
tagging, the continuous POS tag dependencies are already
captured by the transition matrix in CRF layer. The larger
improvements on NER just verify the ability of our model in
learning discontinuous NE dependencies.

Performance on Different Lengths

We further analyze the performance with respect to the dif-
ferent length of sequences. Figure 5 show the results. For
NER, all three variants of multi-channel model consistently
surpass BiLSTM-CRF model on short sentences (sentence
length less than 10 on PD, length less than 5 on CoNLL2003).
It indicates that the improvement of the proposed model over
BiLSTM-CRF on short sentences is much larger than those
on very long sentences. The NE tag dependencies, with
short distances between two discontinuous tags, are captured
very well by our proposed models but simply neglected by
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Figure 6: Scores Distribution. Dashed lines indicate quartiles.

Sent | Retailer Sees Pitfalls In Environmental Push
Tag NN VBZ NNS IN A NN
A 097 099 0.87 098 0.99 0.82
Sent | More Elderly Maintain Their Independence
Tag | JIR 1 VBP PRP$ NN
A 0.98 0.96 095 0.96 0.86
Sent Italy recalled Marcello Cuttitta
Tag | LOCS O PER.B PER_E
A 1.00 0.91 1.00 0.58
Sent |one-day cricket international between Pakistan and New Zealand
Tag 0 o o (o) LOCS O LOCBLOC.E
A 0.71 0.86 1.00 0.99 1.00 0.981.00 0.96

Table 4: Qualitative Analysis.

BiLSTM-CREF, while for those dependencies with very long
neighboring NE distances, capturing tag dependencies is also
challenging for our models. For POS tagging, performances
of different length are relatively comparable, while the iso-
lated tag LSTM performs better than the shared one.

For shared tag LSTM and isolated tag LSTM, the latter
one performs more stable and better than the former one on
all lengths. We conjecture that under isolated LSTM setting,
the feature spaces of two LSTMs are relatively independent
and would not interfere with each other. Specifically, model
III is relatively better than feature integration.

Qualitative Analysis

The weight A in joint tagging decision of isolated tag LSTM
actually indicates the confidence and balance between word
LSTM tagging probability and tag LSTM prediction proba-
bility. If A > 0.5, the final tagging decision relies more on
word LSTM prediction ability, otherwise, the tag LSTM play
a more important role. As shown in table 4, A varies along
the sentence, showing the effectiveness of both probabilities.

Score Distribution

To further verify the advantage of multi-channel model in
comparison with BILSTM-CRF model, we draw the scores
distribution following [Reimers and Gurevych, 2017]. Figure
6 depicts that the quartiles of our model are above those of
the BILSTM-CRF model on all tasks, which suggests that the
performance benefits from modeling tag dependencies.

5 Related Work

Traditional sequence tagging models are mostly linear sta-
tistical models, including Hidden Markov Models, Condi-
tional Random Fields[Passos et al., 2014; Cuong et al., 2014;
Luo et al., 2015] and perceptron [Collins, 2002], which rely
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heavily on manual features and task specific resources. For
instance, orthographic features and external resources such
as gazetteers are widely used in NER [Ma and Hovy, 2016].
Due to the high cost of task-specific knowledge [Ma and Xia,
2014], these models are hardly to transfer to other tasks.

Recent years, non-linear neural networks are widely and
successfully applied to sequence tagging, with the benefit
of distributed word representations and rich feature repre-
sentation learning. [Collobert er al., 2011] used a simple
feed-forward neural network with a sliding context window
over the input sequence embeddings, and infers the tag se-
quence with a CRF layer. A tag transition matrix is used
for inference, which makes the model effective. Most sub-
sequent work on neural segmentation followed this method,
improving the extraction of emission features by using more
complex neural network structures. [Zheng et al., 2013] ap-
plied this structure in word segmentation and POS tagging
to get rid of the hand-crafted features. [Chen et al., 2015]
used a LSTM-CRF model to capture long-range sequence
dependencies for word segmentation. [Chiu and Nichols,
2015] proposed to use BiLSTM to model word information
in NER.[Lample et al., 2016] used BiLSTM-CRF in NER.
[Ma and Hovy, 2016] applied a similar structure. Most of the
previous works utilize a CRF layer to restrict neighboring tag
dependencies, leaving behind longer ranges of tag dependen-
cies. Whereas we use tag LSTM to handle different ranges
of tag dependencies. [Pei er al., 2014] used a tensor neural
network to model complicated interactions between context
and tags for word segmentation, which is in spirit similar to
us. They added the single previous one tag in the model with-
out considering a longer history of all previous tags, while we
handle all the predicted tag sequence and model the tag and
context interactions along the tag prediction.

6 Conclusion

We study the tag dependencies in sequence tagging and iden-
tify the problems of the long range tag dependencies and tag-
word sequence interactions. Novel multi-channel models are
introduced to exploit different ranges of word and tag depen-
dencies and their interactions. Experiments show that our
specifically designed variants effectively handle the tag de-
pendency, especially the discontinuous NE tag dependencies,
and achieve significant improvements over the baselines.
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