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Abstract

This paper proposes three distor-
tion models to explicitly incorporate
the word reordering knowledge into
attention-based Neural Machine Trans-
lation (NMT) for further improving
translation performance. Our pro-
posed models enable attention mech-
anism to attend to source words re-
garding both the semantic requirement
and the word reordering penalty. Ex-
periments on Chinese-English trans-
lation show that the approaches can
improve word alignment quality and
achieve significant translation improve-
ments over a basic attention-based N-
MT by large margins. Compared with
previous works on identical corpora,
our system achieves the state-of-the-art
performance on translation quality.

1 Introduction
Word reordering model is one of the most
crucial sub-components in Statistical Machine
Translation (SMT) (Brown et al., 1993; Koehn
et al., 2003; Chiang, 2005) which provides
word reordering knowledge to ensure reason-
able translation order of source words. It is
separately trained and then incorporated into
the SMT framework in a pipeline style.

In recent years, end-to-end NMT (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Bahdanau et al., 2015) has made tremen-
dous progress (Jean et al., 2015; Luong et al.,
2015b; Shen et al., 2016; Sennrich et al., 2016;
Tu et al., 2016; Zhou et al., 2016; Johnson
et al., 2016). An encoder-decoder framework
(Cho et al., 2014b; Sutskever et al., 2014) with
attention mechanism (Bahdanau et al., 2015)

is widely used, in which an encoder compresses
the source sentence, an attention mechanism
evaluates related source words and a decoder
generates target words.
The attention mechanism evaluates the dis-

tribution of to-be-translated source words in
a content-based addressing fashion (Graves
et al., 2014) which tends to attend to the
source words regarding the content relation
with current translation status. Lack of ex-
plicit models to exploit the word reordering
knowledge may lead to attention faults and
generate fluent but inaccurate or inadequate
translations. Table 1 shows a translation in-
stance and Figure 1 depicts the corresponding
word alignment matrix that produced by the
attention mechanism. In this example, even
though the word “zuixin (latest)” is a common
adjective in Chinese and its following word
should be translated soon in Chinese to En-
glish translation direction, the word “yiju (ev-
idence)” does not obtain appropriate attention
which leads to the incorrect translation.

src

youguan(related) baodao(report)
shi(is) zhichi(support) tamen(their)
lundian(arguments) de(’s)
zuixin(latest) yiju(evidence) .

ref the report is the latest evidence that
supports their arguments .

NMT the report supports their perception
of the latest .

count zuixin yiju {0}

Table 1: An instance in Chinese-English
translation task. The row “count” represents
the frequency of the word collocation in the
training corpus. The collocation “zuixin yiju”
does not appear in the training data.
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Figure 1: The source word “yiju” does not ob-
tain appropriate attention and its word sense
is completely neglected.

To enhance the attention mechanism, im-
plicit word reordering knowledge needs to be
incorporated into attention-based NMT. In
this paper, we introduce three distortion mod-
els that originated from SMT (Brown et al.,
1993; Koehn et al., 2003; Och et al., 2004; Till-
mann, 2004; Al-Onaizan and Papineni, 2006),
so as to model the word reordering knowledge
as the probability distribution of the relative
jump distances between the newly translated
source word and the to-be-translated source
word. Our focus is to extend the attention
mechanism to attend to source words regard-
ing both the semantic requirement and the
word reordering penalty.

Our models have three merits:

1. Extended word reordering knowledge. Our
models capture explicit word reordering
knowledge to guide the attending process
for attention mechanism.

2. Convenient to be incorporated into
attention-based NMT. Our distortion
models are differentiable and can be
trained in the end-to-end style. The inter-
polation approach ensures that the pro-
posed models can coordinately work with
the original attention mechanism.

3. Flexible to utilize variant context for com-
puting the word reordering penalty. In this
paper, we exploit three categories of in-
formation as distortion context conditions

to compute the word reordering penalty,
but variant context information can be u-
tilized due to our model’s flexibility.

We validate our models on the Chinese-
English translation task and achieve notable
improvements:

• On 16K vocabularies, NMT models are
usually inferior in comparison with the
phrase-based SMT, but our model sur-
passes phrase-based Moses by average
4.43 BLEU points and outperforms the
attention-based NMT baseline system by
5.09 BLEU points.

• On 30K vocabularies, the improvements
over the phrase-based Moses and the
attention-based NMT baseline system are
average 6.06 and 1.57 BLEU points re-
spectively.

• Compared with previous work on identi-
cal corpora, we achieve the state-of-the-
art translation performance on average.

The word alignment quality evaluation shows
that our model can effectively improve the
word alignment quality that is crucial for im-
proving translation quality.

2 Background
We aim to capture word reordering knowledge
for the attention-based NMT by incorporat-
ing distortion models. This section briefly in-
troduces attention-based NMT and distortion
models in SMT.

2.1 Attention-based Neural Machine
Translation

Formally, given a source sentence x =
x1, ..., xm and a target sentence y = y1, ..., yn,
NMT models the translation probability as

P (y|x) =

n∏

t=1

P (yt|y<t, x), (1)

where y<t = y1, ..., yt−1. The generation
probability of yt is

P (yt|y<t, x) = g(yt−1, ct, st), (2)

where g(·) is a softmax regression function,
yt−1 is the newly translated target word and
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Figure 2: The general architecture of our pro-
posed models. The dash line represents vari-
ant context can be utilized to determine the
word reordering penalty.

st is the hidden states of decoder which repre-
sents the translation status.

The attention ct denotes the related source
words for generating yt and is computed as the
weighted-sum of source representation h upon
an alignment vector αt shown in Eq.(3) where
the align(·) function is a feedforward network
with softmax normalization.

ct =

m∑

j=1

αt,jhj

αt,j = align(st, hj)

(3)

The hidden states st is updated as

st = f(st−1, yt−1, ct), (4)

where f(·) is a recurrent function.
We adopt a varietal attention mechanism1

in our in-house RNNsearch model which is im-
plemented as

s̃t = f1(st−1, yt−1),

αt,j = align(s̃t, hj),

st = f2(s̃t, ct),

(5)

where f1(·) and f2(·) are recurrent functions.
As shown in Eq.(3), the attention mecha-

nism attends to source words in a content-
based addressing way without considering any
explicit word reordering knowledge. We in-
troduce distortion models to capture explicit
word reordering knowledge for enhancing the
attention mechanism and improving transla-
tion quality.

1https://github.com/nyu-dl/dl4mt-
tutorial/tree/master/session2

2.2 Distortion Models in SMT
In SMT, distortion models are linearly com-
bined with other features, as follows,

y∗ = argmax
y

exp[λdd(x, y, b)+

R−1∑

r=1

λrhr(x, y, b)],
(6)

where d(·) is the distortion feature, hr(·) repre-
sents other features, λd and λr are the weights,
b is the latent variable that represents trans-
lation knowledge and R is the number of fea-
tures.
IBM Models (Brown et al., 1993) depict-

ed the word reordering knowledge as position-
al relations between source and target word-
s. Koehn et al. (2003) proposed a distortion
model for phrase-based SMT based on jump
distances between the newly translated phras-
es and to-be-translated phrases which does
not consider specific lexical information. Och
et al. (2004) and Tillmann (2004) proposed
orientation-based distortion models that con-
sider translation orientations. Yaser and Pa-
pineni (2006) proposed a distortion model to
estimate probability distribution on possible
relative jumps conditioned on source words.
These models are proposed for SMT and

separately trained as sub-components. In-
spired by these previous work, we introduce
the distortion models into NMT model for
modeling the word reordering knowledge. Our
proposed models are designed for NMT which
can be trained in the end-to-end style.

3 Distortion Models for
attention-based NMT

The basic idea of our proposed distortion mod-
els is to estimate the probability distribution
of the possible relative jump distances between
the newly translated source word and the to-
be-translated source word upon the context
condition. Figure 2 shows the general archi-
tecture of our proposed model.

3.1 General Architecture
We employ an interpolation approach to incor-
porate distortion models into attention-based
NMT as

αt = λ · dt + (1 − λ)α̂t, (7)
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Figure 3: Illustration of shift actions of the
alignment vector αt−1. If αt is the left shift
of αt−1, it represents the translation orienta-
tion of the source sentence is backward and
if αt is the right shift of αt−1, the translation
orientation is forward.

where αt is the ultimate alignment vector for
computing the related source context ct, dt is
the alignment vector calculated by the distor-
tion model, α̂t is the alignment vector com-
puted by the basic attention mechanism and
λ is a hyper-parameter to control the weight
of the distortion model.

In the proposed distortion model, relative
jumps on source words are depicted as the
“shift” actions of the alignment vector αt−1

which is shown in the Figure 3. The right shift
of αt−1 indicates that the translation orienta-
tion of source words is forward and the left
shift represents that the translation orienta-
tion is backward. The extent of a shift action
measures the word reordering distance. Align-
ment vector dt, which is produced by the dis-
tortion model, is the expectation of all possible
shifts of αt−1 conditioned on certain context.

Formally, the proposed distortion model is

dt = E[Γ(αt−1)]

=

l∑

k=−l

P (k|Ψ) · Γ(αt−1, k),
(8)

where k ∈ [−l, l] is the possible relative jump
distance, l is the window size parameter and
P (k|Ψ) stands for the probability of jump dis-
tance k that conditioned on the context Ψ.
Function Γ(·) for shifting the alignment vec-
tor is defined as

Γ(αt−1, k) =




{αt−1,−k, ..., αt−1,m, 0, ..., 0}, k<0
αt−1, k= 0
{0, ..., 0, αt−1,1, ..., αt−1,m−k}, k>0

(9)

which can be implemented as matrix multi-
plication computations.

We respectively exploit source context,
target context and translation status con-
text (hidden states of decoder) as Ψ and
derive three distortion models: Source-based
Distortion (S-Distortion) model , Target-
based Distortion (T-Distortion) model
and Translation-status-based Distortion
(H-Distortion) model. Our framework is
capable of utilizing arbitrary context as the
condition Ψ to predict the relative jump
distances.

3.2 S-Distortion model
S-Distortion model adopts previous source
context ct−1 as the context Ψ with the intu-
ition that certain source word indicate certain
jump distance. The to-be-translated source
word have intense positional relations with the
newly translated one.
The underlying linguistic intuition is that

synchronous grammars (Yamada and Knight,
2001; Galley et al., 2004) can be extracted
from language pairs. Word categories such as
verb, adjective and preposition carry general
word reordering knowledge and words carry
specific word reordering knowledge.
To further illustrate this idea, we present

some common synchronous grammar rules
that can be extracted from the example in Ta-
ble 1 as follows,

NP −→ JJ NN | JJ NN

JJ −→ zuixin | latest.
(10)

From the above grammar, we can conjecture
the speculation that after the word ”zuix-
in(latest)” is translated, the translation orien-
tation is forward with shift distance 1.
The probability function in S-Distortion

model is defined as follows,

P (·|Ψ) = z(ct−1)

= softmax(Wcct−1 + bc),
(11)

where Wc ∈ R(2l+1)×dim(ct−1) and bc ∈ R2l+1

are weight matrix and bias parameters.

3.3 T-Distortion Model
T-Distortion model exploits the embedding of
the previous generated target word yt−1 as the
context condition to predict the probability
distribution of distortion distances. It focuses
on the word reordering knowledge upon target

1527



word context. As illustrated in Eq.(10), the
target word “latest” possesses word reordering
knowledge that is identical with source word
“zuixin”.

The probability function in T-Distortion
model is defined as follows,

P (·|Ψ) = z(yt−1)

= softmax(Wyemb(yt−1) + by),
(12)

where emb(yt−1) is the embedding of yt−1,
Wy ∈ R(2l+1)×dim(emb(yt−1)) and by ∈ R2l+1

are weight matrix and bias parameters.

3.4 H-Distortion Model
The hidden states s̃t−1 reflect the translation
status and contains both source context and
target context information. Therefore, we ex-
ploit s̃t−1 as context Ψ in the H-Distortion
model to predict shift distances.

The probability function in H-Distortion
model is defined as follows,

P (·|Ψ) = z(s̃t−1)

= softmax(Wss̃t−1 + bs)
(13)

where Ws ∈ R(2l+1)×dim(s̃t−1) and bs ∈ R2l+1

are the weight matrix and bias parameters.

4 Experiments
We carry the translation task on the Chinese-
English direction to evaluate the effectiveness
of our models. To investigate the word align-
ment quality, we take the word alignmen-
t quality evaluation on the manually aligned
corpus. We also conduct the experiments to
observe effects of hyper-parameters and the
training strategies.

4.1 Data and Metrics
Data: Our Chinese-English training corpus
consists of 1.25M sentence pairs extracted
from LDC corpora2 with 27.9M Chinese word-
s and 34.5M English words respectively. 16K
vocabularies cover approximately 95.8% and
98.3% words and 30K vocabularies cover ap-
proximately 97.7% and 99.3% words in Chi-
nese and English respectively. We choose
NIST 2002 dataset as the validation set. NIST

2The corpora includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07, LD-
C2004T08 and LDC2005T06.

2003-2006 are used as test sets. To assess the
word alignment quality, we employ Tsinghua
dataset (Liu and Sun, 2015) which contains
900 manually aligned sentence pairs.
Metrics: The translation quality evaluation
metric is the case-insensitive 4-gram BLEU3

(Papineni et al., 2002). Sign-test (Collins
et al., 2005) is exploited for statistical signifi-
cance test. Alignment error rate (AER) (Och
and Ney, 2003) is calculated to assess the word
alignment quality.

4.2 Comparison Systems

We compare our approaches with three base-
line systems:
Moses (Koehn et al., 2007): An open source
phrase-based SMT system with default set-
tings. Words are aligned with GIZA++ (Och
and Ney, 2003). The 4-gram language mod-
el with modified Kneser-Ney smoothing is
trained on the target portion of training da-
ta by SRILM (Stolcke et al., 2002).
Groundhog4: An open source attention-
based NMT system with default settings.
RNNsearch∗: Our in-house implementation
of NMT system with the varietal attention
mechanism and other settings that presented
in section 4.3.

4.3 Training

Hyper parameters: The sentence length for
training NMTs is up to 50, while SMT model
exploits whole training data without any re-
strictions. Following Bahdanau et al. (2015),
we use bi-directional Gated Recurrent Unit
(GRU) as the encoder. The forward repre-
sentation and the backward representation are
concatenated at the corresponding position as
the ultimate representation of a source word.
The word embedding dimension is set to 620
and the hidden layer size is 1000. The interpo-
lation parameter λ is 0.5 and the window size
l is set to 3.
Training details:
Square matrices are initialized in a random or-
thogonal way. Non-square matrices are ini-
tialized by sampling each element from the

3ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-v11b.pl

4https://github.com/lisa-groundhog/
GroundHog
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Systems MT03 MT04 MT05 MT06 Average Average Increase
Moses 31.61 33.48 30.75 30.85 31.67 −
Groundhog(16K) 29.14 31.23 28.11 27.77 29.06 −
RNNsearch∗(16K) 30.77 33.92 30.82 28.56 31.02 −

+ T-Distortion 35.71‡ 37.81‡ 33.78‡ 33.79‡ 35.27 +(4.26, 3.60, 6.21)
+ S-Distortion 36.58‡ 38.47 ‡ 34.85‡ 33.86‡ 35.94 +(4.92, 4.27, 6.88)
+ H-Distortion 35.95‡ 38.77‡ 35.33‡ 34.36‡ 36.10 +(5.09, 4.43, 7.04)

Groundhog(30K) 31.92 34.09 31.56 31.12 32.17 −
RNNsearch∗(30K) 36.47 39.17 35.04 33.97 36.16 −

+ T-Distortion 37.93† 40.40‡ 36.81‡ 35.77‡ 37.73 +(1.57, 6.06, 5.56)
+ S-Distortion 37.47† 40.52‡ 36.16‡ 35.32 37.37 +(1.21, 5.70, 5.20)
+ H-Distortion 38.33‡ 40.11‡ 36.71† 35.29‡ 37.61 +(1.45, 5.94, 5.44)

Table 2: BLEU-4 scores (%) on NIST test set 03-06 of Moses (default settings), Groundhog
(default settings), RNNsearch∗ and RNNsearch∗ with distortion models respectively. The val-
ues in brackets are increases on RNNsearch∗, Moses and Groundhog respectively. ‡ indicates
statistical significant difference (p<0.01) from RNNsearch∗ and † means statistical significant
difference (p<0.05) from RNNsearch∗.

Gaussian distribution with mean 0 and vari-
ance 0.012. All bias are initialized to 0.

Parameters are updated by Mini-batch Gra-
dient Descent and the learning rate is con-
trolled by the AdaDelta (Zeiler, 2012) algorith-
m with decay constant ρ = 0.95 and denomi-
nator constant ϵ = 1e − 6. The batch size is
80. Dropout strategy (Srivastava et al., 2014)
is applied to the output layer with the dropout
rate 0.5 to avoid over-fitting. The gradients of
the cost function which have L2 norm larger
than a predefined threshold 1.0 is normalized
to the threshold to avoid gradients explosion
(Pascanu et al., 2013). We exploit length nor-
malization (Cho et al., 2014a) on candidate
translations and the beam size for decoding is
12. For NMT with distortion models, we use
trained RNNsearch∗ model to initialize param-
eters except for those related to distortions.

4.4 Results
The translation quality experiment results are
shown in Table 2. We carry the experiments
on different vocabulary sizes for that different
vocabulary sizes cause different degrees of the
rare word collocations. Through this way, we
can validate the effects of our proposed models
in alleviating the rare word collocations prob-
lem that leads to incorrect word alignments.
On 16K vocabularies: The phrase-based
Moses performs better than the basic NMTs
including Groundhog and RNNsearch∗. Be-

sides the differences between model archi-
tectures, restricted vocabularies and sentence
length also affect the performance of NMTs.
However, RNNsearch∗ with distortion models
surpass phrase-based Moses by average 3.60,
4.27 and 4.43 BLEU points. RNNsearch∗ out-
performs Groundhog by average 1.96 BLEU
points due to the varietal attention mech-
anism, length normalization and dropout s-
trategies. Distortion models bring about re-
markable improvements as 4.26, 4.92 and 5.09
BLEU points over the RNNsearch∗ model.
On 30K vocabularies: RNNsearch∗ with
distortion models yield average gains by 1.57,
1.21 and 1.45 BLEU points over RNNsearch∗

and outperform phrase-based Moses by aver-
age 6.06, 5.70 and 5.94 BLEU points and sur-
pass GroundHog by average 5.56, 5.20 and
5.44 BLEU points. RNNsearch∗(16K) with
distortion models achieve close performances
with RNNsearch∗(30K). The improvements on
16K vocabularies are larger than that on 30K
vocabularies for the intuition that more ”UN-
K” words lead to more rare word collocations,
which results in serious attention ambiguities.
The RNNsearch∗ with distortion models

yield tremendous improvements on BLEU s-
cores proves the effectiveness of proposed ap-
proaches in improving translation quality.
Comparison with previous work: We
present the performance comparison with pre-
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System Length MT03 MT04 MT05 MT06 Average
Coverage 80 - - 32.73 32.47 -
MEMDEC 50 36.16 39.81 35.91 35.98 36.95
NMTIA 80 35.69 39.24 35.74 35.10 36.44
Our work 50 37.93 40.40 36.81 35.77 37.73

Table 3: Comparison with previous work on identical training corpora. Coverage (Tu et al.,
2016) is a basic RNNsearch model with a coverage model to alleviate the over-translation and
under-translation problems. MEMDEC (Wang et al., 2016) is to improve translation quality
with external memory. NMTIA (Meng et al., 2016) exploits a readable and writable attention
mechanism to keep track of interactive history in decoding. Our work is NMT with H-Distortion
model. The vocabulary sizes of all work are 30K and maximum lengths of sentence differ.

(a) (b)

Figure 4: (a) is the output of the distortion model and is calculated on shift actions of previous
alignment vector. (b) is the ultimate word alignment matrix of attention-based NMT with
H-Distortion model. Compared with Figure 1, (b) is more centralized and accurate.

Systems BLEU AER
RNNsearch∗(30K) 20.90 49.73

+ T-Distortion 24.33‡ 46.92
+ S-Distortion 24.10‡ 47.37
+ H-Distortion 24.42‡ 47.05

Table 4: BLEU-4 scores (%) and AER scores
on Tsinghua manually aligned Chinese-English
evaluation set. The lower the AER score, the
better the alignment quality.

vious work that employ identical training cor-
pora in Table 3. Our work evidently outper-
forms previous work on average performance.
Although we restrict the maximum length of
sentence to 50, our model achieves the state-

of-the-art BLEU scores on almost all test sets
except NIST2006.

4.5 Analysis
We investigate the effects on the alignment
quality of our models and conduct the exper-
iments to evaluate the influence of the hyper-
parameter settings and the training strategies.

4.5.1 Alignment Quality
Distortion models concentrate on attending
to to-be-translated words based on the word
reordering knowledge and can intuitively en-
hance the word alignment quality. To in-
vestigate the effect on word alignment qual-
ity, we apply the BLEU and AER evalua-
tions on Tsinghua manually aligned data set.
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(a) (b)

Figure 5: Translation performance on the test sets with respect to the hyper-parameter λ and l.

System MT03 MT04 MT05 MT06 Average
Pre-training 35.95 38.77 35.33 34.36 36.10
No pre-training 36.99 38.42 34.56 34.01 36.00

Table 5: Comparison between pre-training and no pre-training H-Distortion model. The per-
formances are consistent.

Table 4 lists the BLEU and AER scores of
Chinese-English translation with 30K vocabu-
lary. RNNsearch*(30K) with distortion mod-
els achieve significant improvements on BLEU
scores and obvious decrease on AER scores.
The results shows that the proposed model can
effectively improve the word alignment quality

Figure 4 shows the output of distortion
model and ultimate alignment matrix of the
above-mentioned instance. Compared with
Figure 1, the alignment matrix produced by
NMT with distortion models is more concen-
trated and accurate. The output of distortion
model shows its capacity of modeling word re-
ordering knowledge.

4.5.2 Effect of Hyper-parameters

To investigate the effect of the weight hyper-
parameter λ and window hyper-parameter l
in the proposed model, we carry experiments
on H-Distortion model with variable hyper-
parameter settings. We fix l = 3 for exploring
the effect of λ and fix λ = 0.5 for observing
the effect of l. Figure 5 presents the trans-
lation performances with respect to hyper-
parameters. With the increase of weight
λ, the BLEU scores first rise and then drop,
which shows the distortion model provides ad-
ditional helpful information while can not fully
cover the attention mechanism for its insuffi-
cient content searching ability. For window

l, the experiments show that larger windows
bring slight further improvements, which in-
dicates that distortion model pays more at-
tention to the short-distance reordering knowl-
edge.

4.5.3 Pre-training VS No Pre-training
We conduct the experiment without using pre-
training strategy to observe the effect of the
initialization. As is shown in Table 5, the
no-pre-training model achieves consistent im-
provements with the pre-training one which
verifies the stable effectiveness of our ap-
proach. Initialization with pre-training strate-
gy provides a fast approach to obtain the mod-
el for it needs fewer training iterations.

5 Related Work

Our work is inspired by the distortion model-
s that widely used in SMT. The most related
work in SMT is the distortion model proposed
by Yaser and Papineni (2006). Their mod-
el is identical to our S-Distortion model that
captures the relative jump distance knowledge
on source words. However, our approach is
deliberately designed for the attention-based
NMT system and is capable of exploiting vari-
ant context information to predict the relative
jump distances.
Our work is related to the work (Luong

et al., 2015a; Feng et al., 2016; Tu et al., 2016;
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Cohn et al., 2016; Meng et al., 2016; Wang
et al., 2016) that concentrate on the improve-
ment of the attention mechanism. To remit
the computing cost of the attention mecha-
nism when dealing with long sentences, Lu-
ong et al. (2015a) proposed the local atten-
tion mechanism by just focusing on a sub-
scope of source positions. Cohn et al. (2016)
incorporated structural alignment biases in-
to the attention mechanism and obtained
improvements across several challenging lan-
guage pairs in low-resource settings. Feng
et al. (2016) passed the previous attention con-
text to the attention mechanism by adding re-
current connections as the implicit distortion
model. Tu et al. (2016) maintained a cover-
age vector for keeping the attention history
to acquire accurate translations. Meng et al.
(2016) proposed the interactive attention with
the attentive read and attentive write opera-
tion to keep track of the interaction history.
Wang et al. (2016) utilized an external memo-
ry to store additional information for guiding
the attention computation. These works are
different from ours, as our distortion models
explicitly capture word reordering knowledge
through estimating the probability distribu-
tion of relative jump distances on source words
to incorporate word reordering knowledge into
the attention-based NMT.

6 Conclusions

We have presented three distortion models to
enhance attention-based NMT through incor-
porating the word reordering knowledge. The
basic idea of proposed distortion models is to
enable the attention mechanism to attend to
the source words regarding both semantic re-
quirement and the word reordering penalty.
Experiments show that our models can ev-
idently improve the word alignment quality
and translation performance. Compared with
previous work on identical corpora, our mod-
el achieves the state-of-the-art performance on
average. Our model is convenient to be ap-
plied in the attention-based NMT and can be
trained in the end-to-end style. We also in-
vestigated the effect of hyper-parameters and
pre-training strategy and further proved the
stable effectiveness of our model. In the fu-
ture, we plan to validate the effectiveness of

our model on more language pairs.
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