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Abstract
The encoder-decoder neural framework is widely
employed for Neural Machine Translation (NMT)
with a single encoder to represent the source sen-
tence and a single decoder to generate target words.
The translation performance heavily relies on the
representation ability of the encoder and the gen-
eration ability of the decoder. To further enhance
NMT, we propose to extend the original encoder-
decoder framework to a novel one, which has mul-
tiple encoders and decoders (ME-MD). Through
this way, multiple encoders extract more diverse
features to represent the source sequence and mul-
tiple decoders capture more complicated transla-
tion knowledge. Our proposed ME-MD framework
is convenient to integrate heterogeneous encoders
and decoders with multiple depths and multiple
types. Experiment on Chinese-English translation
task shows that our ME-MD system surpasses the
state-of-the-art NMT system by 2.1 BLEU points
and surpasses the phrase-based Moses by 7.38
BLEU points. Our framework is general and can
be applied to other sequence to sequence tasks.

1 Introduction
The encoder-decoder framework [Kalchbrenner and Blun-
som, 2013; Cho et al., 2014; Sutskever et al., 2014] is widely
exploited for Neural Machine Translation. In this frame-
work, an encoder compresses the source sentence to a dis-
tribution representation and a decoder generates target words
one by one regarding the source representation. Compared
with the Statistical Machine Translation (SMT), NMT models
the translation knowledge through training a single network
in the end-to-end style and gets ride of constructing several
sub-components separately.

Plenty of approaches are proposed to enhance the NMT
performance, such as attention mechanisms [Bahdanau et al.,
2015; Luong et al., 2015a; Meng et al., 2016], effective con-
nections [Zhou et al., 2016; Wu et al., 2016], coverage mod-
els [Tu et al., 2016], addressing rare words [Jean et al., 2015;
Luong et al., 2015b; Sennrich et al., 2016; Chung et al.,
2016], joint training [Dong et al., 2015; Luong et al., 2016;
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Figure 1: The general architecture of the proposed ME-MD frame-
work. The architecture consists of two modules: M-Encoder and
M-Decoder. Compared with the encoder-decoder framework, ME-
MD exploits multiple encoders and decoders.

Firat et al., 2016; Zoph and Knight, 2016], external memory
[Wang et al., 2016] and sentence-level training [Shen et al.,
2016].

The translation performance heavily relies on the source
sentence representation ability of the encoder and the target
sentence generation ability of the decoder. To further enhance
NMT, we propose a novel framework named as “ME-MD
(multiple encoders and multiple decoders)”, which exploits
multiple encoders to represent the source sequence and mul-
tiple decoders to generate target words. These encoders and
decoders are allowed to possess different depths or multi-
ple types. The basic idea is that multiple encoders provide
more comprehensive source representation and multiple de-
coders capture more complicated translation knowledge. We
implement several ME-MD systems and carry experiments
on the Chinese-English translation task. Experimental results
show that ME-MD systems outperform the encoder-decoder
baseline by large margins. Our best system surpasses the
state-of-the-art NMT system by 2.1 BLEU points and exceeds
phrase-based Moses by 7.38 BLEU points. We also validate
that our approach benefits more from the architecture change
rather than making the network wider and deeper. Although,
we conduct the experiment on machine translation task, our
framework is general and can be applied to other sequence to
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Figure 2: (a) is an multi-depth M-Encoder with three sub-encoders. Each encoder has unique depth. The source sentence is compressed by
encoders respectively and the distributed representations are combined into one as the comprehensive representation of the source sentence.
(b) is an multi-type M-Encoder with one GRU-based encoder and one CNN-based encoder. The representations from GRU-based encoder
and CNN-based encoder are combined into one to represent the source sentence.

sequence tasks.

2 Neural Machine Translation
We briefly introduce the NMT architecture [Bahdanau et al.,
2015] that our systems build on. Formally, given a source
sentence x = x1, ..., xm and a target sentence y = y1, ..., yn,
NMT models the translation probability as

P (y|x) =
n∏
t=1

P (yt|y<t, x), (1)

where y<t = y1, ..., yt−1.
The NMT system primarily consists of two parts: the en-

coder and the decoder. For convenient explanation, we at-
tribute the attention mechanism as a sub-component of the
decoder. The encoder compresses the source sentence into
the distribution representation and the decoder generates tar-
get words one by one regarding the source representation, as

h = {h1, ..., hm} = Encoder(x)
y = {y1, ..., yn} = Decoder(h),

(2)

where h is the source representation. The generation proba-
bility of yt is computed as

q = g(yt−1, ct, st)
P (yt|y<t, x) = softmax(q),

(3)

where q is the context to predict the target word, g(·) is a
linear function and st is the hidden state of decoder which
represents the translation status. The attention ct denotes the
related source words for generating yt and is computed as the

weighted-sum of source representation h upon an alignment
vector αt shown in Eq.(4) where the align(·) function is a
feed-forward network with the softmax normalization.

ct = attention(st−1,h)

=
m∑
i=1

αt,ihi

αt,i = align(st−1,hi)

= softmax(vTα tanh(Wαst−1 +Uαhj)).

(4)

The hidden state st is updated as

st = f(st−1,yt−1, ct), (5)

where f(·) is a gated hidden unit.
In recent, a varietal attention mechanism1 is implemented

as
s̃t = f1(st−1,yt−1),

αt,j = align(s̃t,hj),

st = f2(s̃t, ct),

(6)

where f1(·) and f2(·) are recurrent functions. We adopt this
varietal attention mechanism in our NMT systems.

3 ME-MD Framework
We aim to enhance NMT through incorporating multiple en-
coders and decoders. Our intuition is that multiple encoders
provide comprehensive source representations and multiple
decoders capture complicated translation knowledge.

1https://github.com/nyu-dl/dl4mt-tutorial/tree/master/session2
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Figure 3: The architecture of a multi-depth M-Decoder with three
decoders. The depth of decoders are 1, 2 and 3, respectively. Each
decoder has independent RNN parameters and attention parame-
ters. The outputs of three decoders are combined and feed into the
softmax function to predict the target word.

3.1 General Architecture
The proposed ME-MD framework consists of two parts: M-
Encoder and M-Decoder, as shown in Figure 1. The M-
Encoder compresses the source sentence into the distribu-
tion representation as the source representation and the M-
Decoder generates target sentence word by word upon the
source representation.

Compared with the single encoder in the encoder-decoder
framework, M-Encoder allows multiple encoders to represent
the source sentence, respectively. All the source representa-
tion are combined to construct the ultimate source represen-
tation. Through incorporating diverse encoders, we expect
to obtain a more comprehensive representation of the source
sentence. In the M-Decoder, more than one decoders are in-
corporated to capture more complicated translation knowl-
edge. The outputs of the decoders are combined before the
softmax layer for predicting target words. The proposed
ME-MD framework is flexible to integrate variable encoders
and decoders and can be applied to other sequence to se-
quence tasks.

3.2 M-Encoder
Encoders in M-Encoder module can posses multi-depths and
multi-types. The multi-depth M-Encoder combines a cou-
ple of encoders with different depths and the multi-type M-
Encoder exploits encoders with different types.

We consider that multi-depth encoders can provide mul-
tiple level abstraction of the source sentence. Figure 2 (a)
shows a multi-depth M-Encoder with three encoders, which
depths are 2, 4 and 6, respectively. Without loss of gener-
ality, we take the “encoder 2” for detailed illustration. We
exploit the left-to-right gated recurrent unit (LGRU) [Cho et
al., 2014] to forwardly compress the source sequence and the
right-to-left gated recurrent unit (RGRU) to reversely com-

press the source sequence. Layers with different directions
are alternately stacked with direct connections. After the in-
put sequence is compressed by stacked GRU layers to the vec-
tor o2 = {o21, ..., o2m}, a gated unit is employed to combine
original word embedding e(xi) and o2i as

z2i = sigmoid(Wxz · e(xi) +Woz · o2i + bz)

h̃2i = tanh(Wxh · e(xi) +Woh · o2i + bh)

h2i = (1− z2i) ∗ e(xt) + z2i ∗ h̃2i,
(7)

where Wxz,Woz,Wxh and Woh ∈ Rd×d are the weight ma-
trix parameters , bz and bh ∈ Rd are the bias parameters. For
conveniently builds the network, we set the word dimension
and hidden unit numbers to the identical value d. Three en-
coders produce three source representations as

{h11, ..., h1m}, {h21, ..., h2m}, {h31, ..., h3m}. (8)

We combine the three representations with a feed-forward
network as

hi = tanh(Wh1 · h1i +Wh2 · h2i +Wh3 · h3i + b), (9)

in which Wh1,Wh2, and Wh3 ∈ Rd×d are the weight matrix
parameters, bz ∈ Rd is the bias parameter.

Figure 2 (b) shows a multi-type M-Encoder with two types
of encoders to compress the source sentence. One encoder is
the GRU-based network and another is the CNN-based net-
work. The CNN encoder only possesses a convolutional layer
with a fixed window size. The GRU encoder captures the
global source representation and the CNN encoder focus on
the local representation. The output of the CNN-encoder is
computed as

o2i = tanh(Wf · [xi−b p2 c : ... : xi+b p2 c] + b), (10)

where Wf ∈ Rd×p×d is the weight matrix parameters, b is
the bias parameter and p is the convolutional window size.
The gate computation and the ultimate source representation
computation are identical to the multi-depth M-Encoder.

3.3 M-Decoder
The M-Decoder aims to enhance the generation ability of
the decoder through integrating multiple decoders. Simi-
lar to the M-Encoder, the M-Decoder can also have multi-
depth and multi-type. The multi-depth M-Decoder con-
sists of a couple of decoders with different depths. The
multi-type M-Decoder allows to exploit the variable atten-
tion mechanisms [Bahdanau et al., 2015; Luong et al., 2015a;
Wu et al., 2016] and multiple recurrent networks.

Figure 3 presents a multi-depth M-Decoder that contains
three decoders with different depths. We take the “decoder2”
for detailed description without loss of generality. We adopt
the varietal decoder implementation in our NMT systems.
Formally, the output q2,t of the “decoder2” at time t is com-
puted as following:

s̃21,t = LGRU21(s2,t−1,yt−1),

s̃22,t = LGRU22(s̃22,t−1, s̃21,t),

c2,t = attention2(s̃22,t,h),

s2,t = DGate2(s̃22,t, c2,t),

q2,t = g(s2,t, c2,t, yt−1),

(11)
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where s̃21,t and s̃22,t are outputs of the GRU layers, c2,t is the
related source context for generating target word yt, function
attention(·) is computed as in Eq.(4) and function g(·) is a
linear one. The gate computation DGate2(s̃22,t, c2,t) is

z = sigmoid(Wcz · c2,t +Wsz · s̃22,t + bgz),

r = sigmoid(Wcr · c2,t +Wsr · s̃22,t + bgr),

s̃2,t = tanh((Wss · s̃22,t + bss) ∗ r +Wcs · c2,t),
s2,t = s̃22,t ∗ z + s̃2,t ∗ (1− z),

(12)

in which z is the update gate, r is the reset gate, Wcz , Wsz ,
Wcr, Wsr, Wss and Wcz are weight matrix parameters and
bgz , bgr and bss are bias parameters. The outputs of three
decoders are combined by a feed-forward network and feeded
into softmax function to predict the target word as

qt = tanh(Wq1 · q1,t +Wq2 · q2,t +Wq3 · q3,t + bq),

P (yt) = softmax(qt),
(13)

where Wq1, Wq2 and Wq3 are weight matrix parameters and
bq is the bias parameter.

Although we present several categories of M-Encoder and
M-Decoder in this section, a large variety of encoders and
decoders can be incorporated into our framework for its flex-
ibility.

4 Experiment
We validate the effectiveness of the proposed framework on
the Chinese-English translation task.

4.1 Data and Metrics
Our Chinese-English training corpus consists of 1.25M sen-
tence pairs extracted from LDC corpora2 with 27.9M Chi-
nese words and 34.5M English words respectively. The 30K
vocabularies cover approximately 97.7% and 99.3% words
in Chinese and English respectively. We choose NIST 2002
dataset as the validation set. NIST 2003-2006 are used as
test sets. The translation quality evaluation metric is the case-
insensitive 4-gram BLEU3 [Papineni et al., 2002].

4.2 Systems
We implements 4 ME-MD systems and compare them with
two baseline systems. The systems are listed as following:

1. Moses [Koehn et al., 2007] is an open source phrase-
based SMT baseline system with default settings. Words
are aligned with GIZA++ [Och and Ney, 2003]. The
4-gram language model with modified Kneser-Ney
smoothing is trained on the target portion of training data
by SRILM [Stolcke and others, 2002].

2. RNNsearch∗ is our in-house implementation of
RNNsearch [Bahdanau et al., 2015] baseline system

2The corpora includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08
and LDC2005T06.

3ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-v11b.pl

with the varietal attention mechanism. Different from
the original model , we stack a forward GRU layer
and a backward GRU layer with direct connection as a
two layers encoder. The system can be regarded as the
“1Encoders-1Decoder” ME-MD system and is the basis
of other ME-MD systems.

3. 2Encoders-1Decoder gets two GRU-based encoders
and one GRU-based decoder. The depths of encoders
are 2 and 4, respectively. The depth of the decoder is 1.

4. 3Encoders-1Decoder has three GRU-based encoders
and one GRU-based decoder. The depths of encoders
are 2, 4 and 6, respectively. The depth of the decoder is
1.

5. 3Encoders-3Decoders consists of three GRU-based en-
coders and three GRU-based decoders. The depths of
encoders and decoders are 2, 4 and 6, respectively.

6. GCEncoders-1Decoders contains one GRU-based en-
coder and one CNN-based encoder. The depth of the
GRU-based encoder is 2 and the convolutional window
size of the CNN-based encoder is 3. The depth of the
decoder is 1.

4.3 NMT Training
The sentence length for training NMT models is up to 50,
while SMT model exploits whole training data without any
restrictions. The word embedding dimension and the hidden
unit numbers are set to 512. Square matrices are initialized
in a random orthogonal way. Non-square matrices are ini-
tialized by sampling each element from the Gaussian distri-
bution with mean 0 and variance 0.012. All bias are initial-
ized to 0. Parameters are updated by Mini-batch Gradient
Descent and learning rate is controlled by AdaDelta [Zeiler,
2012] with decay constant ρ = 0.95 and denominator con-
stant ε = 1e − 6. The batch size is 80. Dropout strategy
[Srivastava et al., 2014] is applied to the output layer with
the dropout rate=0.5 to avoid over-fitting. The gradients of
the cost function which have L2 norm larger than a prede-
fined threshold 1.0 is normalized to the threshold to avoid
gradients explosion [Pascanu et al., 2013]. We exploit length
normalization on candidate translations and the beam size for
decoding is 12. The systems are implemented on the Theano
library and trained with Tesla K40 GPUs.

4.4 Experiment Result
Table 1 shows the performance of each system. The
2Encoder-1Decoder system and the 3Encoder-1Decoder sys-
tem surpass the RNNsearch∗ baseline by 0.52 and 1.90 BLEU
points, from which we conclude that incorporating additional
encoders can effectively improve the NMT performance.
Through extending the number of decoders to three, we ob-
tain further more 0.43 BLEU points that proves the effective-
ness of the M-Decoder module. The GCEncoders-1Decoders
system outperforms the RNNsearch∗ baseline by 1.19 BLEU
points shows the CNN-based encoder improves the source
representation ability of the M-Encoder. The GCEncoders-
1Decoders system surpasses 2Encoders-1Decoder system by
0.67 BLEU points shows that CNN-based encoder provides

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3395



Id Systems MT03 MT04 MT05 MT06 Average
1 Moses 31.61 33.48 30.75 30.85 31.67
2 RNNsearch∗ 37.35 39.32 35.82 34.40 36.72+(−, 5.05)

3 2Encoders-1Decoder 37.88 39.77 36.28 35.02 37.24+(0.52, 5.57 )

4 3Encoders-1Decoder 38.99 40.89 37.46 37.13 38.62+(1.90, 6.95)

5 3Encoders-3Decoders 38.93 41.69 38.24 37.34 39.05+(2.33, 7.38)

6 GCEncoders-1Decoders 38.84 40.62 36.46 35.73 37.91+(1.19, 6.24)

Table 1: BLEU-4 scores (%) on NIST test set 03-06 of Moses (default settings), RNNsearch∗(1Encoder-1Decoder) and ME-MD systems
(Id=3:6) with different numbers of encoders and decoders. The values in brackets are increases on RNNsearch∗ and Moses respectively. The
result shows that ME-MD systems achieve significant improvements upon Moses and RNNsearch∗ baseline.

System Length MT03 MT04 MT05 MT06 Average
Coverage [Tu et al., 2016] 80 - - 32.73 32.47 -
MEMDEC [Wang et al., 2016] 50 36.16 39.81 35.91 35.98 36.95
NMTIA [Meng et al., 2016] 80 35.69 39.24 35.74 35.10 36.44
3Encoders-3Decoders 50 38.93 41.69 38.24 37.34 39.05+2.1

Table 2: Comparisons with previous works on identical training corpora. Coverage is a basic RNNsearch model with a coverage model to
alleviate the over-translation and under-translation problems. MEMDEC is to improve translation quality with the external memory. NMTIA

exploits a readable and writable attention mechanism to keep track of interactive history in decoding. The vocabulary sizes of all work are
30K and maximum lengths of sentence differ. Our “3Encoders-3Decoders” system surpasses previous works by large margins and achieves
the stat-of-the-art performance.

the diverse source representation.
We present the performance of previous works that employ

identical training corpora in Table 2. Although we restrict the
maximum length of sentence to 50, our model achieves the
state-of-the-art performance on all test sets. Our ME-MD sys-
tem outperforms previous work by at least 2.1 BLEU points.

4.5 Comparison with Deeper and Wider Networks
We carry more experiments to investigate whether our ap-
proach achieves improvements through just making the neu-
ral network seems deeper and wider or not. Table 3 shows
the performance comparison between wider, deeper networks
and the ME-MD systems and Figure 4 presents the training
speeds of each system.
• Wider Networks. We enlarge the word embedding di-

mension and the hidden unit numbers to make networks
wider. We achieve improvements as 0.79 BLEU points
by extending the width from 512 to 1024 and obtain fur-
ther more 0.32 BLEU points through set the width to
2048. However, the approach leads the rapid increase of
the parameters and the dramatic decrease on the training
speed. Compared with the wider networks, our approach
provides larger improvements with less parameters and
saves significant computation overhead.
• Deeper Networks. With the increasing of the depth,

RNNsearch∗ achieves slight improvements or even ob-
tains inferior performance. The reason is that it is diffi-
cult to train a very deep networks for the gradient prop-
agation problem. Although our encoders and decoders
are also very deep, we still achieve significant improve-
ments for the shallow encoders is able to alleviate the
gradient propagation problem. From the speed experi-
ment, we observer that the speed of a ME-MD system is

Figure 4: The training speed of each system. Enlarging the width of
the RNNsearch∗ causes rapid decrease on training speed. The speed
of a ME-MD system depends on its deepest encoder and is close to
the RNNsearch∗ that has same depth. Compared with the deeper
and wider networks, the ME-MD systems achieves significant im-
provements with modest increase on the training overhead.

mainly depend on the deepest encoder and is close to the
RNNsearch∗ that possess the same depth.

The experimental results show that the improvements of
our approach benefit more from the effective architecture
than just introducing more parameters and ME-MD systems
achieves significant improvements with modest increase on
the training overhead.

5 Related Work
Our proposed ME-MD framework possesses multiple
encoders and decoders, which is similar to the multi-task
learning architectures that based on the encoder-decoder
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Id Systems Dimensions #Parameters MT03 MT04 MT05 MT06 Average
1 RNNsearch∗ 512 53.7M 37.35 39.32 35.82 34.4 36.72
2 RNNsearch∗ 1024 122.6M 37.91 40.21 36.77 35.15 37.51+0.79

3 RNNsearch∗ 2048 306.0M 37.82 40.65 36.36 36.49 37.83+1.11

4 4layers-RNNsearch∗ 512 58.4M 37.31 39.02 36.08 34.62 36.76+0.04

5 6layers-RNNsearch∗ 512 63.2M 36.08 38.51 35.08 33.61 35.82−0.9

6 2Encoder-1Decoder 512 62.6M 37.88 39.77 36.28 35.02 37.24+0.52

7 3Encoder-1Decoder 512 73.4M 38.99 40.89 37.46 37.13 38.62+1.90

8 3Encoder-3Decoder 512 87.8M 38.93 41.69 38.24 37.34 39.05+2.33

Table 3: From system 1 to system 3, we enlarge the word embedding dimension and hidden units number to construct wider network.
Although, the approach provides improvements, the parameters scale increase rapidly, which leads to serious computational overhead. Our
proposed ME-MD method offers greater improvements with less parameters growth. Comparing system 1, 4 and 5, the deeper networks
slightly improve the translation quality or even produce inferior performance.

framework. Dong et al. [2015] proposed a unified network
with one encoder and multiple decoders to simultaneously
train couples of translation systems. These translation
systems share the source sentence representation and gen-
erate target translations in different languages. Luong et
al. [2016] presented a framework with multiple encoders and
decoder for multiple-task sequence to sequence learning.
The encoders and decoders are designed for multiple specific
tasks, such as translation, parsing and image caption. Firat
et al. [2016] proposed to share the attention mechanism for
jointly training multi-lingual translation systems, in which
encoders and decoders are employed for certain languages.
The above mentioned works just activate one encoder and
one decoder when deal with a certain task or translation
direction. In our framework, all the encoders and decoders
are utilized simultaneously, through which the translation
quality is improved. The multi-source translation model with
multiple encoders and attention mechanisms was proposed
by Zoph and Knight [2016]. One encoder is applied to com-
press one kinds of source languages and all encoders outputs
are combined to generate target translation. Compared with
our work, their approach requires multi-way parallel corpus
that is difficult to obtain.

6 Conclusion
We proposed an effective framework named “ME-MD” to
enhance NMT performance with multiple encoders and de-
coders. Compared with the encoder-decoder framework, our
approach enables to exploit multiple encoders and decoders
with variable depths and types. The basic idea is that mul-
tiple encoders provide the more comprehensive representa-
tion of the source sentence and multiple decoders captures
more complicated translation knowledge. To validate the
effectiveness of our approach, we carry the experiment on
Chinese-English translation task. We trained various net-
works architecture with M-Encoder and M-Decoder modules.
Experiments show that ME-MD systems achieve significant
improvements on translation quality over the basic encoder-
decoder system and the phrase-based system by large mar-
gins. Through increasing the number and category of en-
coders and decoders, we acquire continuous improvements.

The improvements benefit from the structural change of the
original architecture. The comparison with previous works
on identical training corpora shows our best model achieves
the state-of-the-art performance. We also implemented the
wider networks and found that enlarging the word embedding
and hidden size can bring further improvements on transla-
tion quality. While, wider networks require enormous com-
puting overhead, which needs longer training time and larger
GPU memory space. The networks with deeper architecture
do not produce considerable improvements. with the increase
of depth,the experiment show that translation quality is de-
creased on the contrary. Compared with the wider and deeper
networks, our model enables diverse encoders and decoders
which leads to the translation quality enhancement with less
computation overhead.

Although, we carry the experiment on the machine trans-
lation task, the ME-MD framework is general and can be ap-
plied to other sequence to sequence tasks. The framework
is a kind of novel approaches to enhance the neural network
performance. Except the implementations that shown in this
paper, more categories of encoders and decoders can be intro-
duced into the framework. In the future, we will validate our
approach on more language pairs and explore more effective
methods to improve the model capacity.
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