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Abstract

There has been growing interest in stochastic methods
to natural language generation (NLG). While most NLG
pipelines separate morphological generation and syn-
tactic linearization, the two tasks are closely related. In
this paper, we study joint morphological generation and
linearization, making use of word order and inflections
information for both tasks and reducing error propaga-
tion. Experiments show that the joint method signifi-
cantly outperforms a strong pipelined baseline (by 1.1
BLEU points). It also achieves the best reported result
on the Generation Challenge 2011 shared task.

Introduction
There has been a significant growth of interest in stochastic
(corpus-based) natural language generation (NLG) (Bohnet
et al. 2010; Wan et al. 2009; Bangalore, Rambow, and Whit-
taker 2000; Oh and Rudnicky 2000; Langkilde and Knight
1998). Such methods often treat the problem of NLG as a
pipeline of several independent steps. For example, shown
in Figure 1(a), a pipeline based on the meaning text theory
(MTT) splits NLG into three independent steps (Bohnet et
al. 2010): 1. syntactic generation: generating an unordered
and lemma-formed syntactic tree from a semantic graph; 2.
syntactic linearization: linearizing the unordered syntactic
tree; 3. morphological generation: generating the inflection
for each lemma in the string.

Although treated as separated steps, the tasks of syntactic
linearization and morphological generation strongly inter-
act with each other. Take the bag-of-lemmas [John, honest,
nice, and, a, friend, be] for example. On the one hand, if we
know that the correct word order is “John be a honest and
nice friend”, we can easily generate the correct inflection
“an” for the lemma “a”. On the other hand, if we know that
the correct inflection for the lemma “a” is “an”, we can eas-
ily infer that the correct word ordering of the NP-phrase is
“an honest and nice friend” rather than “an nice and honest
friend”. Thus jointly performing the two tasks in one single
step can lead to better use of information and reduction of
error propagation.

∗Work done when the first author was a visiting student at Sin-
gapore University of Technology and Design.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: (a) NLG pipeline based on the meaning text theory
(Bohnet et al. 2010), (b) pipeline of this paper. Sem stands for Se-
mantics, Synt stands for syntax and Morph stands for morphology.

Recent years have witnessed a great success of joint meth-
ods on natural language processing problems, such as joint
chunking and part-of-speech tagging (Sutton, McCallum,
and Rohanimanesh 2007), joint Chinese word segmenta-
tion and part-of-speech tagging (Zhang and Clark 2008;
Jiang et al. 2008; Sun 2011), joint named entity recognition
and parsing (Finkel and Manning 2009), joint Chinese word
segmentation, part-of-speech tagging and parsing (Zhang et
al. 2013; Hatori et al. 2012) and joint morphological tag-
ging and parsing (Bohnet et al. 2013). These methods tackle
larger combined search spaces, while reaping benefits from
richer sources of information.

In this paper, we study the task of joint syntactic lin-
earization and morphological generation for NLG, taking
the meaning text theory pipeline of Figure 1(a) as a base-
line. We adapt the method of Zhang (2013) to develop a lin-
earization system. As for morphological generation, we first
adopt a small set of rules to get candidate inflections for each
lemma, and then use a statistical model to select the best in-
flection as the result. We develop two pipelined baselines:
one treating morphological generation as a postprocessing
module to linearization, as the MTT pipeline of Bohnet et
al. (2010) does, the other treating it as a preprocessing mod-
ule to linearization. The two baseline systems make different
uses of information. While the former benefits morphologi-
cal generation by word order information, the latter benefits
linearization by readily available inflections. Both, however,
suffer from the error propagation problem.

Based on the learning and search algorithms of Zhang and
Clark (2011), we develop a joint method for morphological
generation and linearization (Figure 1(b)). The joint search
algorithm takes every candidate inflection as a leaf hypoth-
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Figure 2: Several pipelines for syntactic linearization (synt. lin-
ear.) and morphological generation (morph. gen.).

esis, and builds an ordered and inflected tree. To ensure that
the algorithm selects only one inflection for each lemma, we
make candidate inflections for each lemma mutually exclu-
sive. The disambiguation problem is left to the search algo-
rithm, which is designed to tackle NP-complete tasks.

Our experiments are conducted on the dataset from the
Generation Challenges 2011 Surface Realisation Shared
Task, which focuses on the syntactic realization and mor-
phological generation tasks in the MTT NLG pipeline. We
find that performing morphological generation after syntac-
tic linearization gives slightly better outputs than perform-
ing morphological generation before linearization, while the
joint method significantly outperforms the pipelined base-
lines, achieving the best reported result on the shared task.

Our contributions can be summarized as:

• we show that joint syntactic linearization and morpholog-
ical generation can lead to significant improvement over
pipelined methods for natural language generation (by
more than 1.1 BLEU points, from 88.48→ 89.62).

• we investigate the order of morphological generation and
linearization in a pipeline, systematically analyzing the
merits and shortcomings of both pipelined orders.

• we evaluate the dependency-based search architecture of
Zhang (2013) on the Generation Challenge 2011 shared
task, and report the best results on this task.

Baseline
Figure 2 shows three different ways to perform syntactic
linearization and morphological generation. The path 1→4,
used by Bohnet et al. (2010), treats morphological genera-
tion as a postprocessing step to syntactic linearization. On
the other hand, the path 2→3 takes morphological genera-
tion as a preprocessing step to linearization. The path 5 joins
morphological generation and syntactic linearization.

Bohnet et al. (2010) have shown the effectiveness of the
path 1→4, while intuitively the path 2→3 can also be ef-
fective. Although the path 2→3 may lose some accuracy
during morphological generation since it can not use word
order information, it can utilize morphological information

Rules for be
pos==VB→ be
pos==VBZ→ is
pos==VBG or attr[‘partic’] == ‘pres’→ being
pos==VBN or attr[‘partic’] == ‘past’→ been
pos==VBD or attr[‘tense’] == ‘past’

sbj.attr[‘num’] == ‘sg’→ was
sbj.attr[‘num’] == ‘pl’→ were
other→ [was,were]

pos==VBP or attr[‘tense’] == ‘pres’
sbj.attr[‘num’] == ‘sg’→ is
sbj.attr[‘num’] == ‘pl’→ are
other→ [am,is,are]

Rules for other verbs
pos==VB→ lemma
pos==VBZ→ Dict.get(lemma,VBZ)
pos==VBG or attr[‘partic’] == ‘pres’→ Dict.get(lemma,VBG)
pos==VBN or attr[‘partic’] == ‘past’→ Dict.get(lemma,VBN)
pos==VBD or attr[‘tense’] == ‘past’→ Dict.get(lemma,VBD)
pos==VBP or attr[‘tense’] == ‘pres’

sbj.attr[‘num’] == ‘sg’→ Dict.get(lemma,VBZ)
other→ Dict.getall(lemma)

Rules for other types
lemma==a→ [a,an]
lemma==not→ [not,n’t]
others→ Dict.get(lemma,pos)

Table 1: Lemma rules. All rules are in the format: conditions →
candidate inflections. Nested conditions are listed in multi-lines
with indentation. Dict is an inflection dictionary. For detailed for-
matting information, refer to Table 4.

and ngram language models during syntactic linearization,
which the path 1→4 can not utilize. In this paper, we treat
both methods as baseline systems.

Morphological Generation
Four major types of lemmas need morphological genera-
tion, including: nouns, verbs, articles and adjectives. We use
a statistical method to transform these types of lemmas in
a lemma-based dependency tree into morphological forms.
Given a lemma lem, the model selects the inflection with the
highest score from a set of candidates.

y = arg max
m∈Morph(lem)

−→
Θ · f(m)

Here
−→
Θ is the vector of weights and f(m) is the feature

vector of the inflection m. For generating a set of candi-
date morphological forms for each lemma (Morph(lem)),
we use a dictionary and write a small set of rules, which
are listed in Table 1. Since the rules are based on syntactic
annotations of the training corpus, we can safely prune im-
possible inflections for each lemma in the data. For exam-
ple, if we know the part-of-speech of the lemma be is VBD
(past tense verb), then inflections such as am, is and are can
be safely pruned. The averaged perceptron (Collins 2002) is
used to train the classifier for each lemma lem.

We adopt the syntactic feature templates of Zhang (2013)
for morphological generation of the path 1→4 in Figure 2.
However, since the system of 2→3 cannot use word order
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features for preprocessing candidate inflections generation
WORD(h) · POS(h); WORD(h) · LABEL(h);
WORD(h) · POS(h) · LABEL(h);
WORD(h) · WORD(p); WORD(h) · WORD(p) · WORD(pp);
WORD(h) · POS(p); WORD(h) · POS(p) · POS(pp);
For each modifier m of h:

WORD(h) · WORD(m); WORD(h) · POS(m);

Table 2: Feature templates for the morphological generation sys-
tem of the path 2→3 in Figure 2. Indices on the surface string: h
– head; p – parent of h; pp – grandparent of h; m – modifier of h.
Functions: WORD – word at index; POS – part-of-speech at index;
LABEL – dependency label at index.

information in morphological generation, we delete the fea-
tures that are sensitive to word order and add additional fea-
tures, resulting in the templates shown in Table 2.

Bohnet et al. (2010) use an edit-distance-script-based
method for morphological generation. They treat the edit
script (such as “insert ing” or “remove e and insert ing”)
as the output classes for each lemma, in order to reduce the
influence of unseen words. However, they have to consider
hundreds of classes for each lemma, which is unnecessary
since some transformation rules can not be applied to certain
lemmas (such as “inserting ing” does not apply to nouns).
We choose to use a dictionary and hand-written rules to find
a small set of candidates for each lemma as its classes.

Syntactic Linearization
Given an unordered dependency tree d, the task of lineariza-
tion is to find the highest-scored ordered tree y,

y = arg max
y′∈Order(d)

−→
Θ · φ(y

′
)

We adapt the best first search framework of Zhang (2013)
to perform syntactic linearization. Our algorithm uses an
agenda (a priority queue) and a chart (a large beam) to per-
form best first search. Both structures order hypotheses by
the score. Shown in Algorithm 1, the search algorithm ini-
tializes the agenda (Line 4) by building a hypothesis h for
each input word and pushing h onto agenda (Lines 21–24).
Here a hypothesis h is a projective sub dependency tree,
which can be a leaf node. Then at each step, it pops out the
hypothesis h with the highest model score from agenda, try-
ing to combine hwith each hypothesis hc on chart as long as
there is no collision and the head of hc depends on the head
of h. All the combinations are put back onto agenda, and
h is added onto chart (Lines 5–16). Following the previous
work on best first generation (White 2004), we set a timeout
threshold after which the search process is terminated, and
the highest-scored chart hypothesis is used for output.

We adopt the feature templates of Zhang (2013). Shown
in Table 3, we use additional features, including 4-gram
words and 4-gram part-of-speech tags. Inspired by Shen et
al. (2008), we also adopt 4-gram dependency features for
words, part-of-speech tags and dependency labels.

Our linearization system uses the online learning algo-
rithm of Zhang and Clark (2011), which is based on the de-

Algorithm 1: Decoding algorithm for linearization.
Input : words – the input words. If morphological

generation serves as postprocessing, then the inputs
are lemmas.
links – dependency links between words

Output: An ordered sentence with syntax tree.

1 agenda← CreatePriorityQueue();
2 chart← CreateBeam();
3 goals← CreateVector();

4 InitAgenda (words,agenda);

5 while not TimeOut() and Empty(agenda) == False
do

6 h← Pop(agenda);
7 if Finished(h) then
8 AddTo(goals, h);
9 else

10 for hc ∈ chart do
11 if NoCollision(h, hc) and

hc.IsDependentOn(h,links) then
12 hr ← Combine(h, hc, DepLeft);
13 Push(agenda, hr);
14 hr ← Combine(h, hc, DepRight);
15 Push(agenda, hr);

16 AddTo(chart, h);

17 if Empty(goals) then
18 return HighestScore(chart);
19 else
20 return HighestScore(goals);

21 Function InitAgenda (words, agenda)
22 for word ∈ words do
23 h← BuildLeafHypothesis(word);
24 Push(agenda, h);

coding process. At each time, the algorithm examines the
newly dequeued hypothesis h from agenda. If h is not a
gold-standard hypothesis (a gold sub tree), it is treated as a
negative example, the lowest-scored gold-standard hypothe-
sis gmin on the agenda is taken as a positive example, and
the rest of the decoding step is replaced with a parameter
update (Crammer et al. 2006). Similarly, if a gold hypoth-
esis is pruned from chart due to beam search, it is treated
as a positive example, and the highest-scored non-gold hy-
pothesis on chart is treated as a negative example, so that
the parameters are adjusted. The gold hypothesis is put back
onto chart after the update, to ensure that the gold output
can be recovered. Intuitively, these updates ensure that gold
hypotheses have higher scores than non-gold ones, and can
survive pruning while being expanded early.

The Joint Method
There are disadvantages for both baseline methods. On the
one hand, the path 1→4 in Figure 2 cannot utilize morpho-
logical information of ngram language models during syn-
tactic linearization. In addition, errors made by syntactic lin-
earization will propagate to morphological generation. On
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Dependency N-gram Features
WORD(h) · WORD(m) · WORD(s) · dir,
WORD(h) · WORD(m) · WORD(s) · WORD(ss) · dir,
WORD(h) · WORD(m) · WORD(ml),
WORD(h) · WORD(m) · WORD(mr),
POS(h) · POS(m) · POS(s) · dir,
POS(h) · POS(m) · POS(s) · POS(ss) · dir,
POS(h) · POS(m) · POS(ml),
POS(h) · POS(m) · POS(mr),
DEP(h) · DEP(m) · DEP(s) · dir,
DEP(h) · DEP(m) · DEP(s) · DEP(ss) · dir,
DEP(h) · DEP(m) · DEP(ml),
DEP(h) · DEP(m) · DEP(mr),
4-gram Boundary Word & POS-tag features
WORD(B − 3) · WORD(B − 2), WORD(B − 1) · WORD(B),
WORD(B − 2) · WORD(B − 1), WORD(B) · WORD(B + 1),
WORD(B − 1) · WORD(B), WORD(B + 1) · WORD(B + 2),
POS(B − 3) · POS(B − 2), POS(B − 1) · POS(B),
POS(B − 2) · POS(B − 1), POS(B) · POS(B + 1),
POS(B − 1) · POS(B), POS(B + 1) · POS(B + 2),

Table 3: Feature templates. Indices on the surface string: h – head
on newly added arc; m – modifier on arc; s – nearest sibling of m;
ss – nearest sibling of s; ml,mr – left/rightmost modifier of m; B
– boundary between the conjoined phrases (index of the first word
of the right phrase). Variables: dir – direction of the arc. Functions:
WORD – word at index; POS – part-of-speech at index; DEP – de-
pendency label at index.

Algorithm 2: The Agenda Initiation Function for the Joint
algorithm.

1 Function InitAgendaJoint (lemmas, agenda)
2 for lemma ∈ lemmas do
3 ID = GetID (lemma);
4 for cand in lemma.cands do
5 h← BuildLeafHypothesis(cand,ID);
6 Push(agenda, h);

the other hand, the path 2→3 is limited by lack of word or-
der information during morphological generation. The case
of “a” in the introduction is one example.

Algorithm
Given a lemma-formed unordered dependency tree as input,
the joint algorithm generates inflected and ordered candi-
dates and selects the one with the highest score. Similar to
the baselines, we use the rules in Table 1 to generate candi-
date inflections for each lemma for the joint system. For joint
morphological generation and syntactic linearization, we re-
place the function InitAgenda (Lines 21–24 of Algorithm
1) with the function InitAgendaJoint, shown in Algorithm
2. We treat each candidate inflection as a leaf hypothesis
and impose mutual exclusion by letting all candidate inflec-
tions of one lemma share the same ID. The IDs are different
among different lemmas. If two hypotheses contain overlap-
ping IDs (a hypothesis contains a set of IDs), they can not
be combined into a larger hypothesis.

Input(unordered lemma-formed tree):
Lemma POS PID Lemma POS Attributes
SROOT 1 0 play VB tense=pres
OBJ 2 1 Elianti NNP num=sg
P 3 1 . .
SBJ 4 1 Haag NNP num=sg
TITLE 5 4 Ms. NNP num=sg

Reference(ordered inflected sentence):
Ms. Haag plays Elianti .

Table 4: One training instance from Generation Challenge 2011.
The column DEP represents the dependency label for each node,
ID represents the node’s unique ID within the dependency tree,
PID represents the ID of the node’s parent in the dependency tree,
Lemma represents the lemma of the node, POS represents the part-
of-speech of the node, and Attributes represents some attributes
(such as partic, tense or number) of the node.

The search framework of Algorithm 1 is capable for joint
decoding, because the learning-guided search can be used
to tackle the large joint search space, and the baseline lin-
earization features which cover ngram, part-of-speech, and
dependency relations between lemmas, are capable for in-
flection disambiguation.

In addition, search space explosion, which is common for
joint tasks, is not severe for joint syntactic linearization and
morphological generation. One reason is that many ambi-
guities are local problems. Consider again the case in the
introduction. There are 5 candidates [am, is, are, was, were]
for the lemma be, 2 candidates [a, an] for the lemma a and 2
candidates [friends, friend] for the lemma friend. Although
there are 20 possible ways of inflecting the three lemmas,
most of them can be pruned out in hypothesis combinations.
For example, by capturing that the lemma a depends on the
lemma friend, the system knows that friend is singular and
chooses its candidate inflection friend. Capturing that the
only subject of be being single-3rd person John and the part-
of-speech of the lemma be being VBP (verb, present tense),
the system can get the correct morphological form is for the
lemma be. Hence no hypothesis can contain the combination
John were a nice and honest friends. The ambiguities of [a,
an] can be solved by using ngram features.

Experiments
We perform experiments on the corpus for the Generation
Challenges 2011 Surface Realisation Shared Task1, which
provides training and test data for the shallow syntax lin-
earization to morphological generation pipeline. The corpus
consists of unordered lemma sequences in the CoNLL for-
mat and the corresponding ordered morphological outputs.
One example is shown in Table 4.

We obtain our training set from the official training data of
this shared task, using this training set to train the morpho-
logical generation, syntactic linearization and joint systems.
We use the training set and MulText2 (Ide and Véronis 1994)
to get the inflection dictionary mentioned in Table 1. We

1http://www.nltg.brighton.ac.uk/research/sr-task/
2http://catalog.elra.info/
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test the three paths in Figure 2 on the official test set of this
shared task. For development, we extract 1 out of every 20
sentences from the original training set as the development
test set, and take the remaining training data as the devel-
opment training set. Our development test set contains 1809
sentences and the development training set contains 34400
sentences. Following Bohnet et al. (2010), we use the gold
annotations to train all the systems in the pipelined methods.
We perform 10 training rounds for the morphological gener-
ation system, 20 iterations for the linearization system and
20 iterations for the joint system, according to development
experiments. We set the timeout threshold of both the lin-
earization system and the joint system to 8s for all tests and
use the BLEU metric (Papineni et al. 2002) to evaluate the
results. All the systems were implemented in Python, and all
the experiments were performed on an Intel Xeon E5 2660
CPU with Centos 6.3 and Python 2.6.

Generating Reference Trees
Because our linearization system outputs entire dependency
trees rather than surface strings, the training references must
be ordered dependency trees. Shown in Table 4, since the
training references of the shared task data contain only or-
dered surface strings, we obtain reference trees by gen-
erating the 1-to-1 correspondences between the input de-
pendency trees and reference ordered strings. As the input
trees are lemma-formed while the reference sentences are
inflected, we first use a morphological transformation dic-
tionary3 to obtain possible morphological forms for each
lemma in the training input, and then find all its possible
correspondences in the reference (such as be→ is, chase→
chasing). Then we refine the correspondences in a bottom-
up manner: assuming all the sub trees are projective, every
continuous partial tree should be projected to a continuous
phrase in the reference. We use this assumption to prune vi-
olating correspondence links between training input and ref-
erence and obtain a final 1-to-1 correspondence. If there are
multiple mappings after pruning, we choose the first one.
This is because all the mappings are identical, and whatever
we choose has no influence for the training of the lineariza-
tion system. Out of the total 39K training instances, 36.2K
remain. We discard the 2.8K conflicting instances, which are
either non-projective or illegal.

Development Results
Table 5 shows the detailed performance of each method.
The column Morph. shows the precision of the morpho-
logical generation system on the development set, given an
unordered tree (for the Morph. Gen.+Synt. Linear. and the
joint systems) or syntactic linearization results (for the Synt.
Linear.+Morph. Gen. system). It reflects the quality of in-
flection. The column Linear. shows the BLEU score of the
syntactic linearization system on the development set, given
a lemma-formed input (for the Synt. Linear.+Morph. Gen.
and the joint systems) or morphological generation results

3Download from http://www.lexically.net/downloads/BNC wo
rdlists/e lemma.txt, it contains transformations for 14760 lemmas
and has 1.75 morphological forms for each lemma on average.

Methods Morph. Linear. Overall
Synt. Linear.+Morph. Gen. 97.27 92.31 90.44
Morph. Gen.+Synt. Linear. 96.22 92.90 90.36
the joint method 97.68 93.20 91.67

Table 5: Development test results. Morph. stands for mor-
phology, Gen. stands for generation, Synt. stands for syntac-
tic and Linear. stands for linearization.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  2  4  6  8  10  12  14  16  18  20

Tr
ai

ni
ng

 ti
m

e 
(s

ec
)

The number of training iterations

linear.+morph.
morph.+linear.

joint method

Figure 3: Training time (in seconds) by training iteration.

(for the Morph. Gen.+Synt. Linear. system). It reflects the
quality of ordering. The column Overall shows the BLEU
score of the whole pipeline for each method.

The results in Table 5 indicate the merits and shortcom-
ings of each method. On the one hand, we can see that tak-
ing morphological generation as a postprocessing step ben-
efits from word order information for morphological gener-
ation (97.27 vs 96.22). However, it suffers the lack of inflec-
tions during tree linearization (92.31 vs 92.90). On the other
hand, taking morphological generation as a preprocessing
step benefits from inflection information during lineariza-
tion, while the lack of word order knowledge hampers mor-
phological generation. Finally, the joint system outperforms
both pipelined methods on both ordering and inflection. It
proves that the joint method can improve the performance
of both tasks by reducing error propagation.

Figure 3 shows the time taken for each training iteration of
each method, which we use for measuring the search space.
First of all, as the number of training iterations increases,
the training time decreases. Because the trained model im-
proves by the iteration, the best-first search algorithm ex-
pands fewer incorrect hypotheses before the gold goal is
found. In addition, the joint method has a larger search space
and its training time at each iteration is longer than the
pipelined methods. Nevertheless, its decreasing tendency is
similar to the two baseline methods, and its training time
at the end is not significantly longer than the two baseline
methods, both of which proves that the joint method does
not suffer from the search space explosion problem. At the
last iterations, the training time of the joint method becomes
comparable with the pipelined methods.
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Methods BLEU
STUMABA-S 89.11
DCU 85.75
Morph. Generation+Synt. Linearization 88.22
Synt. Linearization+Morph. Generation 88.48
the Joint method 89.62

Table 6: Final results of various methods. Morph. is short for Mor-
phological and Synt. is short for Syntactic.

Inflection Candidates Num 1 2 >=3
Count 136003 58843 5582

Percent 67.86% 29.36% 2.78%

Table 7: Numbers of lemma instances with different range of in-
flection candidates.

Final Results
Table 6 presents the final results of various methods on the
official test set of the Generation Challenge 2011 shared
task. We refer to Belz et al. (2011) to obtain the results of
STUMABA-S and DCU, which are the two best results for
this shared task. From the results we can see that the two
pipelined methods show nearly comparable performance,
which proves that taking morphological generation as pre-
processing is also a reasonable option for the meaning
text theory. The joint method significantly outperforms the
pipelined methods, with p<0.01 on statistical significance
test sign-test (Collins, Koehn, and Kucerova 2005), and ex-
ceeds the previous best system STUMABA-S, becoming the
best reported result in this shared task.

Analysis
Inflection Candidates Generation Table 7 shows the per-
centage of lemma instances with different number of inflec-
tion candidates. From the result we can see that most lem-
mas (about 68%) have only one inflection candidate, mean-
ing their inflection can be easily determined by simple rules
and dictionary. Out of the 5582 lemma instances who have
more than 3 inflection candidates, we find that 5385 of them
(more than 96%) are either ’be’, ’do’ or ’have’. Since their
inflections are usually hard to determine, this give our joint
method the space to improve over the pipelined baseline
methods.

Unseen Words We do not have suffix features, and the
inflection of unseen words are not captured by lexicalized
features. However their part-of-speech can be a useful indi-
cator for inflection disambiguation. Out of the total 57646
lemma instances in the test set, there are 644 unseen nouns
and verbs, which count for about 1 percent of the total in-
stances. Most lemma instances can be covered by our train-
ing data.

Related Work
Existing approaches of syntactic realization can be divided
into several major categories: rule-based, memory-based (or

example based) (Varges and Mellish 2001) and corpus-based
(Langkilde and Knight 1998; Filippova and Strube 2009;
Wan et al. 2009; Bohnet et al. 2010). In recent years, cor-
pora with rich annotations (such as the CoNLL corpus) have
become available, leading to a great success in corpus-based
methods. However, since most of the annotations are shal-
low syntax and semantics, up to now most corpus-based
work focuses on semantics-based realization (White 2004;
Espinosa, White, and Mehay 2008) and shallow syntax-
based linearization (Filippova and Strube 2007; 2009).

Two grammars are typically used by syntactic lineariza-
tion systems: CCG (Zhang and Clark 2011; Zhang, Black-
wood, and Clark 2012) and the dependency grammar (He
et al. 2009; Wan et al. 2009; Filippova and Strube 2009;
Bohnet et al. 2010; Zhang 2013). Our work follows the
dependency-based methods, because the lexicalized depen-
dency grammar is effective for disambiguation in joint mor-
phological generation and syntactic linearization. Another
reason is that the dependency grammar is commonly used
in statistical machine translation (SMT) (Quirk, Menezes,
and Cherry 2005; Ding and Palmer 2005; Xiong, Liu, and
Lin 2007; Shen, Xu, and Weischedel 2008; Xie, Mi, and Liu
2011), a major application of natural language generation.

In recent years, there is a growing interest in generation-
based methods (Bangalore, Haffner, and Kanthak 2007;
Gali and Venkatapathy 2009) for SMT. However, generat-
ing from deep structure requires the recovering of inflection
of each lemma. The meaning text theory pipeline of Bohnet
et al. (2010) treats morphological generation as the postpro-
cessing step of linearization, leading to a error propagation
problem. Jones et al. (2012) avoids this problem by inte-
grating morphological generation into the generation rules,
resulting a high risk of data sparseness and larger ambiguity
for SMT. Our work alleviates this problem by joint morpho-
logical generation and syntactic linearization. Our method
can be used by dependency-based SMT models.

It has been shown that joint morphological and syntac-
tic parsing can improve over the syntactic analysis pipeline
(Bohnet et al. 2013). Our work demonstrates that its counter-
part in natural language generation is also true, reinforcing
the finding that syntax and morphology are closely related.

Conclusion and Future Work
In this paper, we adopt a simple but effective method for
jointly performing two tasks in natural language genera-
tion: morphological generation and syntactic linearization.
Our experiments show that the joint method gives signif-
icant improvement over the pipelined baselines. In addi-
tion, jointly performing the two tasks does not result in
efficiency issues due to search space explosion. As a re-
sult, it should always be preferable to pipelined methods.
By achieving the best reported results on this task, we also
show the effectiveness of the learning-guided search frame-
work of Zhang and Clark (2011). We release our code at
https://sourceforge.net/projects/zgen/

For future work, we will investigate joint methods on par-
tial tree tasks (Zhang 2013) and for deep syntax realization
and morphological generation.
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