
A Simple, Fast Strategy for Weighted Alignment

Hypergraph

Zhaopeng Tu1,2,�, Jun Xie2, Yajuan Lv2, and Qun Liu2,3

1 Department of Computer Science,
University of California, Davis, USA

zptu@ucdavis.edu
2 Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, CAS, Beijing, China
{tuzhaopeng,xiejun,lvyajuan,liuqun}@ict.ac.cn

3 Centre for Next Generation Locolisation
Dublin City University, Ireland

qliu@computing.dcu.ie

Abstract. Weighted alignment hypergraph [4] is potentially useful for
statistical machine translation, because it is the first study to simultane-
ously exploit the compact representation and fertility model of word
alignment. Since estimating the probabilities of rules extracted from
hypergraphs is an NP-complete problem, they propose a divide-and-
conquer strategy by decomposing a hypergraph into a set of independent
subhypergraphs. However, they employ a Bull’s algorithm to enumerate
all consistent alignments for each rule in each subhypergraph, which is
very time-consuming especially for the rules that contain non-terminals.
This limits the applicability of this method to the syntax translation
models, the rules of which contain many non-terminals (e.g. SCFG rules).
In response to this problem, we propose an inside-outside algorithm to ef-
ficiently enumerate the consistent alignments. Experimental results show
that our method is twice as fast as the Bull’s algorithm. In addition, the
efficient dynamic programming algorithm makes our approach applicable
to syntax-based translation models.

Keywords: statistical machine translation, weighted alignment hyper-
graph, optimization.

1 Introduction

Word alignment is the task of identifying translational relations (alignment links)
between words in parallel corpora, in which a word at one language is usually
translated into several words at the other language [1]. Following Moore [6], we
divide alignment links into four categories: “one-to-one” (1-1), “one-to-many”
(1-n), “many-to-one” (m-1) and “many-to-many” (m-n). Table 1 shows the dis-
tribution of links in a word-aligned corpus that contains 1.5 million sentence

� Corresponding author.

G. Zhou et al. (Eds.): NLPCC 2013, CCIS 400, pp. 188–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Simple, Fast Strategy for Weighted Alignment Hypergraph 189

pairs. From this table, we can see that nearly half of the links are not 1-1 links
in both 1-best alignments and 10-best lists. This analysis suggests that the links
are not irrelevant to each other and it is necessary to pay attention to the rela-
tions among them.

Table 1. The distribution of alignment links in a word-aligned corpus that contains
1.5 million sentence pairs

Alignments 1-1 1-n m-1 m-n

1-best 56.5% 17.4% 12.9% 13.2%
10-best 56.4% 17.3% 12.8% 13.5%

To model this phenomenon, Liu et al., [4] propose a novel graph-based compact
representationofword alignment,which takes into account the joint distribution of
alignment links. They first transform each alignment to a bipartite graph (bigraph
in short), in which the nodes are the words in the source and target sentences, and
the edges are word-by-word links. Each bigraph can be decomposed into a set of
disjoint minimal subgraphs, each of which is connected and corresponds to a set
of interrelated links. These subgraphs work as fundamental units in the proposed
approach to exploit the relations among the links. Then they employ a weighted
alignment hypergraph to encode multiple bigraphs, in which each hyperedges cor-
responds to a subgraph in the bigraphs (§ 2.1).

Since estimating the probabilities of rules extracted from hypergraphs is an
NP-complete problem, they propose a divide-and-conquer strategy by decompos-
ing a hypergraph into a set of independent subhypergraphs. Indeed, the reduced
number of hyperedges in the subhypergraphs make the strategy computation-
ally tractable (§ 2.2). However, they employ a Bull’s algorithm to enumerate all
consistent alignments for each rule in each subhypergraph, which is very time-
consuming especially for the rules that contain non-terminals (§ 2.3). This limits
the applicability of this method to the syntax translation models, the rules of
which contain many non-terminals (e.g. SCFG rules).

To alleviate this problem, we propose an inside-outside algorithm to further
divide the subhypergraph into two independent parts (§ 3). With the inside-
outside algorithm, we can employ shared structures for efficient dynamic pro-
gramming. This is very important when calculating the probabilities of rules
with non-terminals. Experimental results show that our approach is twice as fast
as the conventional Bull’s algorithm (§ 4.2). Specifically, the fact that we spend
much less time in the rules with non-terminals makes our approach applicable to
syntax-based translation models, whose rules contain many non-terminals (e.g.
SCFG rules) (§ 4.2).

2 Background

2.1 Weighted Alignment Hypergraph

Each alignment of a sentence pair can be transformed to a bigraph, inwhich the two
disjoint vertex sets S and T are the source and target words respectively, and the

190 Z. Tu et al.

Fig. 1. (a) An example of bigraph constructed from an alignment between a pair of
Chinese and English sentences, (b) the disjoint subgraphs of the bigraph in (a)

the

book

is

on

the

desk

the

book

is

on

the

desk

e1
the

book

is

on

the

desk

e2 e3
e4

e5

Fig. 2. (a) One alignment of a sentence pair; (b) another alignment of the same sentence
pair; (c) the resulting hypergraph that takes the two alignments as samples

edges are word-by-word links. For example, Figure 1(a) shows the corresponding
bigraph of an alignment. Since the bigraph usually is not connected, it can be de-
composed into a unique set ofminimum connected subgraphs (MCSs), where each
subgraph is connected and does not contain any other MCSs. For example, the bi-
graph in Figure 1(a) can be decomposed into the MCSs in Figure 1(b). We can see
that eachMCS corresponds to a many-to-many link. Hereinafter, we use a bigraph
to denote an alignment of a sentence pair.

A weighted alignment hypergraph [4] is a hypergraph that compactly encodes
multiple bigraphs. For example, Figures 2(a) and 2(b) show two bigraphs of the
same sentence pair. Then, a weighted alignment hypergraph can be constructed
by encoding the union set of MCSs in each bipartite hypergraph, in which each
MCS serves as a hyperedge, as in Figure 2(c). Accordingly, each hyperedge is
associated with a weight to indicate how well it is, which is the probability sum
of bigraphs in which the corresponding MCS occurs divided by the probability
sum of all possible bigraphs.

Formally, a weighted bipartite hypergraph H is a triple 〈S, T,E〉 where S and
T are two sets of vertices on the source and target sides, and E are hyperedges
associated with weights. Liu et al., [4] estimate the weights of hyperedges from
an n-best list by calculating relative frequencies:

A Simple, Fast Strategy for Weighted Alignment Hypergraph 191

w(ei) =

∑
BG∈N p(BG)× δ(BG, gi)

∑
BG∈N p(BG)

where

δ(BG, gi) =

{
1 gi ∈ BG
0 otherwise

(1)

Here N is an n-best bigraph (i.e., alignment) list, p(BG) is the probability of
a bigraph BG in the n-best list, gi is the MCS that corresponds to ei, and
δ(BG, gi) indicates that whether a subgraph gi occurs in the bigraph BG or
not.

2.2 Calculating Rule Probabilities

Liu et al., [4] calculate the fractional count of a phrase pair extracted from the
hypergraph as the probability sum of the alignments with which the phrase
pair is consistent, divided by the probability sum of all alignments encoded in a
hypergraph. Therefore, they need to calculate two probability sums:

1. How to calculate the probability sum of all alignments encoded in a hyper-
graph?

2. How to efficiently calculate the probability sum of all consistent alignments
for each phrase pair?

Enumerating All Alignments
Liu et al., [4] show that enumerating all possible alignments in a hypergraph can
be reformulated as finding all possible complete hypergraph matchings in this

Algorithm 1. Algorithm for enumerating all possible complete hyperedge
matchings in a bipartite hyperedge H = 〈S, T,E〉.
1: procedure ENUMERATION(〈S, T,E〉)
2: completes ← ∅
3: paths ← {∅}
4: for e in E do
5: new paths← ∅
6: for path in paths do
7: if e ∩ path == ∅ then
8: new path← path ∪ {e}
9: if new path connects all vertices then
10: add new path to completes
11: else
12: add new path to new paths

13: add new paths to paths

14: return completes

192 Z. Tu et al.

hypergraph, an NP-complete problem. Therefore, they propose a divide-and-
conquer strategy by decomposing a hypergraph into a set of independent sub-
hypergraphs. For example, Figure 3(b) shows the independent subhypergraphs
of the hypergraph in Figure 3(a). The reduced number of hyperedges in the
subhypergraphs makes the strategy computationally tractable. For each subhy-
pergraph, they employ a Bull’s algorithm for enumerating all possible complete
hyperedge matchings in each subhypergraph, as shown in Algorithm 1. The com-
plexity of this algorithm is O(|E|), where |E| is the number of hyperedges in the
hypergraph.

Enumerating Consistent Alignments
To efficiently calculate the probability sum of all consistent alignments for each
phrase pair, they only concern the overlap subhypergraphs which may generate
the alignments that are not consistent with the phrase pair. As an example,
consider the phrase pair in the grey shadow in Figure 3(a), it is consistent with
all sub-alignments from both h1 and h2 because they are outside and inside
the phrase pair respectively, while not consistent with the sub-alignment that
contains hyperedge e2 from h3 because it contains an alignment link that crosses
the phrase pair. Liu et al., [4] show that nearly 90% of the phrase pairs only need
to concern less than 20% of all subhypergraphs, suggesting that the enumeration
of all consistent alignments for each rule is practically feasible.

the

book

is

on

the

desk

e1

e2 e3
e4

e5

the

book

is

on

the

desk

e1

e2 e3
e4

e5

h1

h3

h2

Fig. 3. (a) An example of a hypergraph in which the nodes in the grey shadow are the
candidate phrase, (b) the independent subhypergraphs of the hypergraph in (a).

2.3 Drawbacks

For each overlap subhypergraph, Liu et al., [4] first enumerate all possible align-
ments using Algorithm 1, then check whether the translation rule is consistent
with each alignment. This method has two drawbacks:

A Simple, Fast Strategy for Weighted Alignment Hypergraph 193

1. It is memory-intensive. As the number of alignments is exponential (although
enumerable) in each hypergraph, it will consume a lot of memory to store
all possible alignments, especially for the hypergraphs that have relatively
many hyperedges.

2. It is time-consuming. To check consistence between an alignment and a rule
that contains non-terminals (sub-phrase pairs in a phrase pair are replaced
with non-terminals), they should check the consistency between the align-
ment and all phrase pairs (including the sub-phrase pairs). It will be time-
consuming and not applicable to the rules that contain many non-terminals
(e.g., SCFG rules in syntax-based translation models).

Given the great number of translation rules extracted from the hypergraphs,
it will take most of the time to enumerate all consistent alignments for each
rule. Therefore, we propose a simple and fast strategy to speed up the process,
and make the weighted alignment hypergraph applicable to the syntax-based
translation models.

3 Optimization

We borrow ideas from the inside-outside algorithm that successfully works in
compact representations [5,9,10,7,8], and apply it to the weighted alignment
hypergraph.

Given a phrase pair and a overlap subhypergraph, we divide the hyperedges in
the subhypergraph into three categories: (1) inside hyperedges that only cover the
vertices inside the phrase pair, (2) outside hyperedges that only cover the vertices
that outside the phrase pair, and (3) crossed hyperedges that cover the vertices
both inside and outside the phrase pair. Take the overlap subhypergraph h2 in
Figure 3(b) as example, e4 is an inside hyperedge, e3 is an outside hyperedge,
and e2 is a crossed hyperedge.

If we remove the crossed hyperedges from a overlap subhypergraph, we will
obtain two independent partial hypergraphs: inside partial hypergraph whose
vertices are connected by the inside hyperedges, and outside partial hypergraph
whose vertices are connected by the outside hyperedges. Given a phrase pair
P , the probability sum of all consistent sub-alignments encoded in the overlap
subhypergraph h is:

p(A|h, P) =
∑

a∈A

p(a|h, P)

=
∑

a∈AI

p(a|IPH)×
∑

a∈AO

p(a|OPH) (2)

Here IPH and OPH denote the inside and outside partial hypergraphs respec-
tively, and AI and AO denote the sub-alignments generated from them individ-
ually. Let OS denotes the set of overlap subhypergraphs for the phrase pair,
then

194 Z. Tu et al.

p(A|H,P) =
∏

hi∈OS

p(A|hi, P)×
∏

hi∈H−OS

p(A|hi) (3)

Here the set of non-overlap subhypergraphs (H−OS) are irrelevant to the phrase
pair, and we have p(A|h, P) = p(A|h) for each h ∈ H −OS. Then the fractional
count of the phrase pair is:

count(P |H) =
p(A|H,P)

p(A|H)

=

∏
hi∈OS p(A|hi, P)
∏

hi∈OS p(A|hi)
(4)

We can easily extend this process to variable rules that contain non-terminals.
For example, we have two sets of overlap subhypergraphs for a variable rule that
contains one non-terminal (i.e., the phrase pair and the sub-phrase pair). Note
that the subhypergraphs intersection set overlaps both the phrase and the sub-
phrase. Therefore, we divide the hyperedges in the intersection set into four
categories: (1) inside the sub-phrase pair, (2) outside the sub-phrase pair but
inside the phrase pair, (3) outside the phrase pair, and (4) crossed hyperedges.
Then we replace the two factors in Eq. 2 with the first three categories above.
We use Eq. 2 for the other overlap subhypergraphs for the phrase and sub-phrase
pairs respectively.

The advantage of inside-outside algorithm is we can employ shared structures
for efficient dynamic programming. For example, when enumerating consistent
alignments for a rule containing one non-terminal in Bull’s algorithm, we should
repeatedly check the consistency between the alignments and the phrases (sub-
phrases). With inside-outside algorithm, we only need to concern the varied part
of the structure (i.e. the intersection between the phrase and the sub-phrase), and
re-used the previous calculated probabilities of the shared structures (i.e. the in-
side probability of the sub-phrase and the outside probability of the phrase). This
greatly speeds up calculating probabilities of rules that contains non-terminals
(§ 4.2).

4 Experiments

4.1 Setup

We carry out our experiments using a reimplementation of the hierarchical
phrase-based system [2]. Each translation rule is limited to have at most two
non-terminals. Our training data is FBIS corpus from LDC dataset that con-
tains 239K sentence pairs.1 We first follow Venugopal et al. [11] to produce n-best

1 The FBIS corpus shares similar subhypergraph distribution with a larger corpus that
contains 1.5 million sentence pairs. We believe that our results also suits large-scale
corpora.

A Simple, Fast Strategy for Weighted Alignment Hypergraph 195

lists via GIZA++. We produce 20-best lists in two translation directions, and use
“grow-diag-final-and” strategy [3] to generate the final 100-best lists by selecting
the top 100 alignments. Finally we construct weighted alignment hypergraphs
from these 100-best lists. For computational tractability, we follow Liu et al. [4]
to only allow a subhypergraph has at most 10 hyperedges.

4.2 Results

Figure 4 shows the comparison results between the conventional Bull’s algorithm
(Bull) and our optimized approach (Optimization). We find that the optimiza-
tion spends half of the time compared with Bull’s algorithm, indicating that our
approach speeds up the rule extraction.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

All Phrase One-NT Two-NTs

T
im

e
(h

ou
r)

Rule Types

Bull
Optimization

Fig. 4. The comparison results of two approaches

For both approaches, phrase extraction (rules without non-terminals) con-
sumes a high portion of time. This is in accord with intuition, because we extract
all possible candidate phrases from the hypergraphs. To maintain a reasonable
rule table size, we only remain more promising candidates that have a frac-
tional count higher than a threshold, which are used to generate rules with non-
terminals. It should be emphasized that our approach consumes more time on
phrase extraction, because we need to calculate the alignments probability sums
for both inside and outside hyperedges, which can be reused in the calculation
of rules with non-terminals.

Concerning translation rules with non-terminals (i.e. One-NT and Two-NT),
we see that Bull’s algorithm spends much more time than our approach. In
Bull’s algorithm, each alignment is repeatedly checked even they share many
sub-alignments. To make things worse, for a rule with n non-terminals, each
alignment is checked (n+1) times (the phrase and the n sub-phrases). In contrast,
our approach only need to concern the intersection of the phrase and the non-
terminals. This proves that our approach is applicable to SCFG rules that contain
many non-terminals.

196 Z. Tu et al.

4.3 Analyses

Why Our Approach Is Faster?. From Figure 4 we can see that our ap-
proach outperforms Bull’s algorithm mainly due to we spend much less time on
the rules with two non-terminals. In this section, we will investigate that why
our approach is faster on the rules with two non-terminals. For the intersecting
overlap subhypergraphs of the two sub-phrases (the two phrase that are replaced
with non-terminals), Bull’s algorithm should check whether the alignments gen-
erated from these subhypergraphs are consistent with the the phrase and the two
sub-phrases. Figure 5(Bull) shows the comparison of two approaches on the rules
with two non-terminals. We find that nearly half of the subhypergraphs have no
less than 5 alignments, which makes the Bull’s algorithm very time-consuming.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge

number of alignments

Bull

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6

pe
rc

en
ta

ge

number of hyperedges

Optimization

Fig. 5. The comparison of two approaches on the rules with two non-terminals

In contrast, our approach only focuses on the crossed hyperedges that may
generate alignments that are not consistent with the rule. For example, given
an overlap subhypergraph that overlaps both two sub-phrases, its vertices can
be divided into three parts: (1) inside the first sub-phrase, (2) inside the second
sub-phrase, (3) outside the two sub-phrases. Therefore, we divide the hyperedges
in the subhypergraph into four categories: (1) inside the first sub-phrase, (2)
inside the second sub-phrase, (3) outside the two sub-phrases, and (4) crossed
hyperedges. The first two sets are previously calculated and we only need to
concern (3): the hyperedges outside the two sub-phrases. Figure 5(Optimization)
shows the distribution of the hyperedges outside the two sub-phrases. It should
be noted that if there is no hyperedges outside the two sub-phrases, no sub-
alignments can be constructed to cover the vertices outside the two sub-phrases.
Then all the alignments generated from this subhypergraph are not consistent
with the rule, and we can directly filter this rule without any calculation. Figure 5
shows that half of the overlap subhypergraphs have no hyperedges outside the
two sub-phrases, which will greatly avoid the time-consuming calculation. Even
in the rest subhypergraphs, most of them have no more than 3 hyperedges, which
will spend few time for the calculation.

A Simple, Fast Strategy for Weighted Alignment Hypergraph 197

In conclusion, our approach avoids a great number of unnecessary and re-
peated calculation, and speeds up the process.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

pe
rc

en
ta

ge

ratio of overlap subhypergraphs

Len=1

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

pe
rc

en
ta

ge

ratio of overlap subhypergraphs

Len=4

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

pe
rc

en
ta

ge

ratio of overlap subhypergraphs

Len=7

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

pe
rc

en
ta

ge

ratio of overlap subhypergraphs

Len=10

Fig. 6. The influence of phrase length on the ratio of overlap subhypergraphs to all
subhypergraphs

The Influence of Phrase Length. As aforementioned, the percentage of over-
lap subhypergraphs in all subhypergraphs determines the efficiency of rule ex-
traction. As one would expect, there are more overlap subhypergraphs for longer
phrases, because a subhypergraph is more likely to cross the phrase and becomes
an overlap subhypergraph for the phrase. Figure 6 shows the influence of phrase
length on the proportion of overlap subhypergraphs, where xtics denotes the
ratio of overlap subhypergraphs to all subhypergraphs and higher value means
more overlap subhypergraphs need to be processed. We can see that the ratio of
overlap subhypergraphs goes up with the increase of phrase length. For example,
when the phrase length is 1 (the top left figure), nearly 90% of the phrase pairs
only need to concern less than 30% of all subhypergraphs. When the phrase
length increases to 10 (the bottom right figure), more than 30% of the phrase
pairs need to process more than 30% of all subhypergraphs. The results indicate
that the limit on the phrase length will speed up the rule extraction.

198 Z. Tu et al.

5 Conclusion and Future Work

In this paper, we propose a inside-outside algorithm to speed up the rule extrac-
tion in weighted alignment hypergraphs. Experimental results shows that the
dynamic programming algorithm is twice as fast as the Bull’s algorithm, and
makes our approach applicable to syntax-based translation models.

Currently, we still spend much time on the calculating probabilities of phrases,
which are reused in the calculation of rules with non-terminals. In the future,
we will develop an efficient algorithm to speed up this process.

Acknowledgement. The authors are supported by 863 State Key Project No.
2011AA01A207, National Key Technology R&D Program No. 2012BAH39B03
and National Natural Science Foundation of China (Contracts 61202216). Qun
Liu’s work is partially supported by Science Foundation Ireland
(Grant No.07/CE/I1142) as part of the CNGL at Dublin City University.

References

1. Brown, P.E., Pietra, S.A.D., Pietra, V.J.D., Mercer, R.L.: The mathematics of
statistical machine translation: Parameter estimation. Computational Linguis-
tics 19(2), 263–311 (1993)

2. Chiang, D.: Hierarchical phrase-based translation. Computational Linguis-
tics 33(2), 201–228 (2007)

3. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceed-
ings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, vol. 1, pp. 48–54.
Association for Computational Linguistics (2003)

4. Liu, Q., Tu, Z., Lin, S.: A Novel Graph-based Compact Representation of Word
Alignment. In: Proceedings of the 51th Annual Meeting of the Association for
Computational Linguistics (2013)

5. Liu, Y., Xia, T., Xiao, X., Liu, Q.: Weighted alignment matrices for statistical
machine translation. In: Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pp. 1017–1026. Association for Computational
Linguistics, Singapore (2009)

6. Moore, R.C.: A discriminative framework for bilingual word alignment. In: Pro-
ceedings of Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing, pp. 81–88. Association for Computa-
tional Linguistics, Vancouver (2005)

7. Tu, Z., Jiang, W., Liu, Q., Lin, S.: Dependency Forest for Sentiment Analysis. In:
Zhou, M., Zhou, G., Zhao, D., Liu, Q., Zou, L. (eds.) NLPCC 2012. CCIS, vol. 333,
pp. 69–77. Springer, Heidelberg (2012)

8. Tu, Z., Liu, Y., He, Y., van Genabith, J., Liu, Q., Lin, S.: Combining Multiple
Alignments to Improve Machine Translation. In: Proceedings of the 24th Interna-
tional Conference on Computational Linguistics (2012)

A Simple, Fast Strategy for Weighted Alignment Hypergraph 199

9. Tu, Z., Liu, Y., Hwang, Y.-S., Liu, Q., Lin, S.: Dependency forest for statistical
machine translation. In: Proceedings of the 23rd International Conference on Com-
putational Linguistics (Coling 2010), pp. 1092–1100. International Committee on
Computational Linguistics, Beijing (2010)

10. Tu, Z., Liu, Y., Liu, Q., Lin, S.: Extracting Hierarchical Rules from a Weighted
Alignment Matrix. In: Proceedings of 5th International Joint Conference on Nat-
ural Language Processing, pp. 1294–1303. Asian Federation of Natural Language
Processing, Chiang Mai (2011)

11. Venugopal, A., Zollmann, A., Smith, N.A., Vogel, S.: Wider pipelines: n-best align-
ments and parses in mt training. In: Proceedings of AMTA, Honolulu, Hawaii
(2008)

	A Simple, Fast Strategy for Weighted Alignment
Hypergraph

	1 Introduction
	2 Background
	2.1 Weighted Alignment Hypergraph
	2.2 Calculating Rule Probabilities
	2.3 Drawbacks

	3 Optimization
	4 Experiments
	4.1 Setup
	4.2 Results
	4.3 Analyses

	5 Conclusion and Future Work
	References

