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Abstract

In this paper, we propose a novel compact
representation calledweighted bipartite
hypergraph to exploit the fertility model,
which plays a critical role in word align-
ment. However, estimating the probabili-
ties of rules extracted from hypergraphs is
an NP-complete problem, which is com-
putationally infeasible. Therefore, we pro-
pose a divide-and-conquer strategy by de-
composing a hypergraph into a set of inde-
pendent subhypergraphs. The experiments
show that our approach outperforms both
1-best andn-best alignments.

1 Introduction

Word alignment is the task of identifying trans-
lational relations between words in parallel cor-
pora, in which a word at one language is usually
translated into several words at the other language
(fertility model) (Brown et al., 1993). Given that
many-to-many links are common in natural lan-
guages (Moore, 2005), it is necessary to pay atten-
tion to the relations among alignment links.

In this paper, we have proposed a novel graph-
based compact representation of word alignment,
which takes into account the joint distribution of
alignment links. We first transform each align-
ment to a bigraph that can be decomposed into a
set of subgraphs, where all interrelated links are
in the same subgraph (§ 2.1). Then we employ
a weighted partite hypergraph to encode multiple
bigraphs (§ 2.2).

The main challenge of this research is to effi-
ciently calculate the fractional counts for rules ex-
tracted from hypergraphs. This is equivalent to the
decision version of set covering problem, which is
NP-complete. Observing that most alignments are
not connected, we propose a divide-and-conquer
strategy by decomposing a hypergraph into a set

Figure 1: A bigraph constructed from an align-
ment (a), and its disjoint MCSs (b).

of independent subhypergraphs, which is compu-
tationally feasible in practice (§ 3.2). Experimen-
tal results show that our approach significantly im-
proves translation performance by up to 1.3 BLEU
points over 1-best alignments (§ 4.3).

2 Graph-based Compact Representation

2.1 Word Alignment as a Bigraph

Each alignment of a sentence pair can be trans-
formed to a bigraph, in which the two disjoint ver-
tex setsS andT are the source and target words re-
spectively, and the edges are word-by-word links.
For example, Figure 1(a) shows the corresponding
bigraph of an alignment.

The bigraph usually is not connected. A graph
is called connected if there is a path between every
pair of distinct vertices. In an alignment, words in
a specific portion at the source side (i.e. a verb
phrase) usually align to those in the corresponding
portion (i.e. the verb phrase at the target side), and
would never align to other words; and vice versa.
Therefore, there is no edge that connects the words
in the portion to those outside the portion.

Therefore, a bigraph can be decomposed into
a unique set ofminimum connected subgraphs
(MCSs), where each subgraph is connected and
does not contain any other MCSs. For example,
the bigraph in Figure 1(a) can be decomposed into
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Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c) the
resulting hypergraph that takes the two alignments as samples.

the MCSs in Figure 1(b). We can see that all in-
terrelated links are in the same MCS. These MCSs
work as fundamental units in our approach to take
advantage of the relations among the links. Here-
inafter, we use bigraph to denote the alignment of
a sentence pair.

2.2 Weighted Bipartite Hypergraph

We believe that offering more alternatives to ex-
tracting translation rules could help improve trans-
lation quality. We propose a new structure called
weighted bipartite hypergraph that compactly en-
codes multiple alignments.

We use an example to illustrate our idea. Fig-
ures 2(a) and 2(b) show two bigraphs of the same
sentence pair. Intuitively, we can encode the
union set of subgraphs in a bipartite hypergraph,
in which each MCS serves as a hyperedge, as in
Figure 2(c). Accordingly, we can calculate how
well a hyperedge is by calculating its relative fre-
quency, which is the probability sum of bigraphs
in which the corresponding MCS occurs divided
by the probability sum of all possible bigraphs.
Suppose that the probabilities of the two bigraphs
in Figures 2(a) and 2(b) are 0.7 and 0.3, respec-
tively. Then the weight ofe1 is 1.0 ande2 is
0.7. Therefore, each hyperedge is associated with
a weight to indicate how well it is.

Formally, aweighted bipartite hypergraph H is
a triple 〈S, T,E〉 whereS andT are two sets of
vertices on the source and target sides, andE are
hyperedges associated with weights. Currently,
we estimate the weights of hyperedges from ann-
best list by calculating relative frequencies:

w(ei) =

∑
BG∈N p(BG)× δ(BG, gi)∑

BG∈N p(BG)

HereN is ann-best bigraph (i.e., alignment) list,

p(BG) is the probability of a bigraphBG in then-
best list,gi is the MCS that corresponds toei, and
δ(BG, gi) is an indicator function which equals 1
whengi occurs inBG, and 0 otherwise.

It is worthy mentioning that a hypergraph en-
codes much more alignments than the inputn-best
list. For example, we can construct a new align-
ment by using hyperedges from different bigraphs
that cover all vertices.

3 Graph-based Rule Extraction

In this section we describe how to extract transla-
tion rules from a hypergraph (§ 3.1) and how to
estimate their probabilities (§ 3.2).

3.1 Extraction Algorithm

We extract translation rules from a hypergraph
for the hierarchical phrase-based system (Chiang,
2007). Chiang (2007) describes a rule extrac-
tion algorithm that involves two steps: (1) extract
phrases from 1-best alignments; (2) obtain vari-
able rules by replacing sub-phrase pairs with non-
terminals. Our extraction algorithm differs at the
first step, in which we extract phrases from hyper-
graphs instead of 1-best alignments. Rather than
restricting ourselves by the alignment consistency
in the traditional algorithm, we extract all possible
candidate target phrases for each source phrase.
To maintain a reasonable rule table size, we fil-
ter out less promising candidates that have afrac-
tional count lower than a threshold.

3.2 Calculating Fractional Counts

The fractional count of a phrase pair is the proba-
bility sum of the alignments with which the phrase
pair is consistent (§3.2.2), divided by the probabil-
ity sum of all alignments encoded in a hypergraph
(§3.2.1) (Liu et al., 2009).
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Intuitively, our approach faces two challenges:

1. How to calculate the probability sum of all
alignments encoded in a hypergraph (§3.2.1)?

2. How to efficiently calculate the probability
sum of all consistent alignments for each
phrase pair (§3.2.2)?

3.2.1 Enumerating All Alignments

In theory, a hypergraph can encode all possible
alignments if there are enough hyperedges. How-
ever, since a hypergraph is constructed from ann-
best list, it can only represent partial space of all
alignments (p(A|H) < 1) because of the limiting
size of hyperedges learned from the list. There-
fore, we need to enumerate all possible align-
ments in a hypergraph to obtain the probability
sump(A|H).

Specifically, generating an alignment from a hy-
pergraph can be modelled as finding acomplete
hyperedge matching, which is a set of hyperedges
without common vertices that matches all vertices.
The probability of the alignment is the product of
hyperedge weights. Thus, enumerating all possi-
ble alignments in a hypergraph is reformulated as
finding allcomplete hypergraph matchings, which
is an NP-complete problem (Valiant, 1979).

Similar to the bigraph, a hypergraph is also usu-
ally not connected. To make the enumeration prac-
tically tractable, we propose adivide-and-conquer
strategy by decomposing a hypergraphH into a set
of independent subhypergraphs{h1, h2, . . . , hn}.
Intuitively, the probability of an alignment is the
product of hyperedge weights. According to the
divide-and-conquer strategy, the probability sum
of all alignmentsA encoded in a hypergraphH is:

p(A|H) =
∏

hi∈H
p(Ai|hi)

Here p(Ai|hi) is the probability sum of all sub-
alignmentsAi encoded in the subhypergraphhi.

3.2.2 Enumerating Consistent Alignments

Since a hypergraph encodes many alignments, it is
unrealistic to enumerate all consistent alignments
explicitly for each phrase pair.

Recall that a hypergraph can be decomposed
to a list of independent subhypergraphs, and an
alignment is a combination of the sub-alignments
from the decompositions. We observe that a
phrase pair is absolutely consistent with the sub-
alignments from some subhypergraphs, while pos-
sibly consistent with the others. As an example,
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Figure 3: A hypergraph with a candidate phrase
in the grey shadow (a), and its independent subhy-
pergraphs{h1, h2, h3}.

consider the phrase pair in the grey shadow in Fig-
ure 3(a), it is consistent with all sub-alignments
from bothh1 andh2 because they are outside and
inside the phrase pair respectively, while not con-
sistent with the sub-alignment that contains hyper-
edgee2 from h3 because it contains an alignment
link that crosses the phrase pair.

Therefore, to calculate the probability sum of all
consistent alignments, we only need to consider
the overlap subhypergraphs, which have at least
one hyperedge that crosses the phrase pair. Given
a overlap subhypergraph, the probability sum of
consistent sub-alignments is calculated by sub-
tracting the probability sum of the sub-alignments
that contain crossed hyperedges, from the proba-
bility sum of all sub-alignments encoded in a hy-
pergraph.

Given a phrase pairP , let OS and NS de-
notes the sets of overlap and non-overlap subhy-
pergraphs respectively (NS = H −OS). Then

p(A|H,P ) =
∏

hi∈OS

p(Ai|hi, P )
∏

hj∈NS

p(Aj|hj)

Here the phrase pair is absolutely consistent with
the sub-alignments from non-overlap subhyper-
graphs (NS), and we havep(A|h, P ) = p(A|h).
Then the fractional count of a phrase pair is:

c(P |H) =
p(A|H,P )

p(A|H)
=

∏
hi∈OS p(A|hi, P )
∏

hi∈OS p(A|hi)

After we get the fractional counts of transla-
tion rules, we can estimate theirrelative frequen-
cies (Och and Ney, 2004). We follow (Liu et al.,
2009; Tu et al., 2011) to learn lexical tables from
n-best lists and then calculate the lexical weights.
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Rules from. . . Rules MT03 MT04 MT05 Avg.
1-best 257M 33.45 35.25 33.63 34.11
10-best 427M 34.10 35.71 34.04 34.62

Hypergraph 426M 34.71 36.24 34.41 35.12

Table 1: Evaluation of translation quality.

4 Experiments

4.1 Setup

We carry out our experiments on Chinese-English
translation tasks using a reimplementation of the
hierarchical phrase-based system (Chiang, 2007).
Our training data contains 1.5 million sentence
pairs from LDC dataset.1 We train a 4-gram
language model on the Xinhua portion of the
GIGAWORD corpus using the SRI Language
Toolkit (Stolcke, 2002) with modified Kneser-Ney
Smoothing (Kneser and Ney, 1995). We use min-
imum error rate training (Och, 2003) to optimize
the feature weights on the MT02 testset, and test
on the MT03/04/05 testsets. For evaluation, case-
insensitive NIST BLEU (Papineni et al., 2002) is
used to measure translation performance.

We first follow Venugopal et al. (2008) to pro-
duce n-best lists via GIZA++. We produce 10-best
lists in two translation directions, and use “grow-
diag-final-and” strategy (Koehn et al., 2003) to
generate the finaln-best lists by selecting the
top n alignments. We re-estimated the probabil-
ity of each alignment in then-best list using re-
normalization (Venugopal et al., 2008). Finally we
construct weighted alignment hypergraphs from
thesen-best lists.2 When extracting rules from hy-
pergraphs, we set the pruning thresholdt = 0.5.

4.2 Tractability of Divide-and-Conquer
Strategy

Figure 4 shows the distribution of vertices (hy-
peredges) number of the subhypergraphs. We can
see that most of the subhypergraphs have just less
than two vertices and hyperedges.3 Specifically,
each subhypergraph has 2.0 vertices and 1.4 hy-

1The corpus includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

2Here we only use 10-best lists, because the alignments
beyond top 10 have very small probabilities, thus have negli-
gible influence on the hypergraphs.

3It’s interesting that there are few subhypergraphs that
have exactly 2 hyperedges. In this case, the only two hy-
peredges fully cover the vertices and they differ at the word-
by-word links, which is uncommon inn-best lists.
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Figure 4: The distribution of vertices (hyperedges)
number of the subhypergraphs.

peredges on average. This suggests that the divide-
and-conquer strategy makes the extraction compu-
tationally tractable, because it greatly reduces the
number of vertices and hyperedges. For computa-
tional tractability, we only allow a subhypergraph
has at most 5 hyperedges.4

4.3 Translation Performance

Table 1 shows the rule table size and transla-
tion quality. Usingn-best lists slightly improves
the BLEU score over 1-best alignments, but at
the cost of a larger rule table. This is in ac-
cord with intuition, because all possible transla-
tion rules would be extracted from different align-
ments inn-best lists without pruning. This larger
rule table indeed leads to a high rule coverage, but
in the meanwhile, introduces translation errors be-
cause of the low-quality rules (i.e., rules extracted
only from low-quality alignments inn-best lists).
By contrast, our approach not only significantly
improves the translation performance over 1-best
alignments, but also outperformsn-best lists with
a similar-scale rule table. The absolute improve-
ments of 1.0 BLEU points on average over 1-best
alignments are statistically significant atp < 0.01
usingsign-test (Collins et al., 2005).

4If a subhypergraph has more than 5 hyperedges, we
forcibly partition it into small subhypergraphs by iteratively
removing lowest-probability hyperedges.
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Rules from. . .
Shared Non-shared All

Rules BLEU Rules BLEU Rules BLEU
10-best 1.83M 32.75 2.81M 30.71 4.64M 34.62

Hypergraph 1.83M 33.24 2.89M 31.12 4.72M 35.12

Table 2: Comparison of rule tables learned fromn-best lists and hypergraphs. “All” denotes the full rule
table, “Shared” denotes the intersection of two tables, and“Non-shared” denotes the complement. Note
that the probabilities of “Shared” rules are different for the two approaches.

Why our approach outperformsn-best lists? In
theory, the rule table extracted fromn-best lists
is a subset of that from hypergraphs. In prac-
tice, however, this is not true because we pruned
the rules that have fractional counts lower than a
threshold. Therefore, the question arises as to how
many rules are shared byn-best and hypergraph-
based extractions. We try to answer this ques-
tion by comparing the different rule tables (filtered
on the test sets) learned fromn-best lists and hy-
pergraphs. Table 2 gives some statistics. “All”
denotes the full rule table, “Shared” denotes the
intersection of two tables, and “Non-shared” de-
notes the complement. Note that the probabil-
ities of “Shared” rules are different for the two
approaches. We can see that both the “Shared”
and “Non-shared” rules learned from hypergraphs
outperformn-best lists, indicating: (1) our ap-
proach has a better estimation of rule probabili-
ties because we estimate the probabilities from a
much larger alignment space that can not be rep-
resented byn-best lists, (2) our approach can ex-
tract good rules that cannot be extracted from any
single alignments in then-best lists.

5 Related Work

Our research builds on previous work in the field
of graph models and compact representations.
Graph models have been used before in word
alignment: the search space of word alignment can
be structured as a graph and the search problem
can be reformulated as finding the optimal path
though this graph (e.g., (Och and Ney, 2004; Liu et
al., 2010)). In addition, Kumar and Byrne (2002)
define a graph distance as a loss function for
minimum Bayes-risk word alignment, Riesa and
Marcu (2010) open up the word alignment task to
advances in hypergraph algorithms currently used
in parsing. As opposed to the search problem, we
propose a graph-based compact representation that
encodes multiple alignments for machine transla-
tion.

Previous research has demonstrated that com-
pact representations can produce improved re-
sults by offering more alternatives, e.g., using
forests over 1-best trees (Mi and Huang, 2008;
Tu et al., 2010; Tu et al., 2012a), word lattices
over 1-best segmentations (Dyer et al., 2008),
and weighted alignment matrices over 1-best word
alignments (Liu et al., 2009; Tu et al., 2011; Tu et
al., 2012b). Liu et al., (2009) estimate the link
probabilities fromn-best lists, while Gispert et
al., (2010) learn the alignment posterior probabil-
ities directly from IBM models. However, both of
them ignore the relations among alignment links.
By contrast, our approach takes into account the
joint distribution of alignment links and explores
the fertility model past the link level.

6 Conclusion

We have presented a novel compact representa-
tion of word alignment, named weighted bipar-
tite hypergraph, to exploit the relations among
alignment links. Since estimating the probabil-
ities of rules extracted from hypergraphs is an
NP-complete problem, we propose a computation-
ally tractable divide-and-conquer strategy by de-
composing a hypergraph into a set of independent
subhypergraphs. Experimental results show that
our approach outperforms both 1-best andn-best
alignments.
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