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Abstract  

Minimum Error Rate Training (MERT) as an effective parameters learning  algorithm is 

widely applied in machine translation and system combination area. However, there exists 

an ambiguity problem regarding to the training goal and it is hard to tackle for MERT, that is 

different parameters may lead to the same minimum error rate in training but greatly 

different performances in test data. We propose a novel training objective as the unique goal 

for training towards, namely partial reference translation, and by use of conditional random 

fields to cast the decoding procedure in system combination as a sequence labeling problem. 

Experiments on Chinese-English translation test sets show that our approach significantly 

outperforms the MERT-based baselines with less training time. 
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1 Introduction 

The mechanism of combining outputs from multiple machine translation systems has shown 

the great power in machine translation (MT) area. Generally, the framework consists of two 

independent steps, confusion network construction (Matusov et al., 2006; Rosti et al., 2007; 

Rosti et al., 2007; He et al., 2008; He and Toutanova 2009), and decoding an optimal path 

evaluated with a set of features. In Table 1, hypotheses are aligned to h0, and corresponding 

confusion network refers to Figure 1. 

 

h0 He feels  to apples 

h1 He prefer ε apples 

h2 He ε like apples 

h3 Him prefer to apples 

Table 1. Suppose h0 is skeleton hypothesis, to which others be aligned pair-wisely. 
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Figure1. The above graph is about a confusion network, and to be casted as a sequence 

labeling problem shown in the below graph. 

 

Training algorithm on confusion networks following Minimum Error Rate Training 

(MERT) (Och 2003; Koehn et al., 2003) aims to learn optimal parameters that could reach 

the minimum error (or maximum BLEU metric in machine translation) in a development set. 

Nevertheless, how to define the better one if two completely different parameters cause the 

same errors? We design an interesting experiment to demonstrate this possible case.  

We train a hierarchical phrase-based translation system for twice. The first time is to let 

MT02 data set for training and MT05 for testing, and the second is vice verse. We compare 

all the intermediate data and find two different set of parameters, both are 8-dimension 

vector, those conduct a similar performance in MT02, whose BLEU score is 0.292, but act 

obviously differently in MT05, 0.264 and 0.312 in case-sensitive BLEU.  

It would be ideal for training parameters towards reference translations. One successful 

work (Blunsom et al.,2008), utilizes the reachable references1  for CRF training. However, it 

is impossible to choose reachable confusion networks to train, because most confusion 

networks does not generate results fully matching the reference translations, so the available 

number of confusion networks is too poor to waste. Thus, we propose a novel objective, 

partial reference translation, as the unique objective for each confusion network to train 

towards. The partial reference translation is defined as the optimal sub-string of reference 

translations, which in the meantime could be potentially decoded from a confusion network. 

In another view, shown in Figure 1, decoding a confusion network is simply to choose for 

each span one edge to construct a full translation. If we consider choice for every span as a 

variable Y, whose values are edges in their respective span, a simple graphical model is 

naturally generated. 

                                                           

 

 

 
1  The ``Reachable'' means reference translations could be generated by a model 

regardless of parameters. In our application, reachable references should be decoded from a 

confusion network. 
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We adopt conditional random fields to train our model on uni-confusion network due to 

an important reason, CRF model could train a global optimal solution (Sutton and McCallum 

2006; Lafferty et al., 2001). In the first part experiments, we conduct several experiments to 

compare the efficiency of parameters training between CRF-based and MERT-based. In the 

second part, we make comparisons on the task of multi-confusion network based system 

combination. Our method is firstly to collect the n-best hypotheses from CRF-based systems, 

then to feed a common multi-confusion network based system to complete a full system 

combination procedure. 

 

 

2 Background 

2.1 Confusion Network and MERT 

Formally, confusion network is a directed, acyclic graph with unique source vertex and sink 

vertex. On each edge of graph, there is one alternative word attached to, including a special 

place-holder ε denoting no concrete word. 

The skeleton hypothesis (also called backbone hypothesis) determines the words order in 

final translation, eg. h0 in Table 1. Constructing a confusion network, all hypotheses are 

aligned to the skeleton (Rosti et al., 2007; He et al., 2008; Matusov et al., 2006) or to partially 

constructed confusion network  (Li et al., 2009; Rosti et al., 2008). 

In order to reduce the risk of mis-choosing skeleton hypothesis, multi-confusion network 

based system combination was developed, which choose respective skeleton for each 

candidate system. Multi-confusion network based system combination may generate 

potential better-quality translations than uni-confusion network based system combination. 

Training parameters in system combination follows Minimum Error Rate Training  

(MERT) firstly proposed by Och  (Och 2003). The whole produce bases on iteration and does 

not stop until predefined times or system converges. In each round, decoder searches an 

n-best hypothesis list for each sentence in the development data set, and MERT predicts the 

optimal parameters having the minimum error rate. 

2.2 Conditional Random Fields 

Conditional random fields (CRFs) are undirected graphical models trained to maximize a 

conditional probability (Lafferty et al., 2001; Sutton and McCallum 2006). A common 

special-case graph structure is a linear chain, which corresponds to a finite state machine, and 

is suitable for sequence labeling. A linear-chain CRF with parameters Λ = {λ1…} defines a 

conditional probability for a state (label) sequence  Y = y1..yN  (for example, POS labels) 

given an input sequence X= x1..xN  (for example, the characters of a Chinese sentence) to be 
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where Zx is the per-input normalization that makes the probability of all state sequences sum 

to one;  fk(yt-1, yt, X
 
, t) is a feature function which is often binary-valued, also can be 

real-valued, and λk is a learned weight associated with feature  fk. The feature functions 
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measure any aspect of a state transition, from yt-1  to  yt, and the entire observation sequence, 

X, centered at the current time step, t. 

The parameters can be estimated by maximum likelihood principle, maximizing the 

conditional probability of a set of label sequences, each given their corresponding input 

sequences. The log-likelihood of training set  {X, Y} is written 
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As the log-likelihood function is convex, this guarantees that every local maximum is a  

global maximum. Our implementation uses a quasi-Newton gradient-climber BFGS for 

optimization, which has been shown to converge much faster. The gradient of feature weight 

λk is  
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where M  is one of possible state sequences generated in input data X. 

The most probable label sequence for an input X can be efficiently searched using Viterbi 

algorithm (Rabiner 1990). 

)|(argmax* XYPY
Y

  

To control over-fitting, we regularize the parameters with a Gaussian prior of 1, which is also 

be viewed as L2 regularization. 

2.3 Features 

Features used in our work and baseline systems are nearly the same as  (Rosti et al., 2007a; 

He et al., 2008), which are modeled in a log-liner fashion. Four class features are defined as 

follows. 

1) Word posterior probabilities p(w| sys ,span). If the word w comes from k-th 

hypothesis of sys-th system, the raw score is assigned as 1/(k+1), and then it is 

normalized by the sum from the same sys and span. 

2) logarithm of language model score, Lm. 

3) ε value number, Num(ε). 

4) words number, Num(w). 

)()()()),|(log()log( 210 wNumwNumwhLmwspansyswph
span sys

sys     
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3 CRF-based Training on System combination 

MERT aims to minimize errors in a development data set (or maximize BLEU metric in 

machine translation and system combination area).  Our intuition is, good translations should 

have a high BLEU score, like reference translations, but high-BLEU translations may not be 

regarded as good ones judged by the people. In the introduction part, our interesting trials 

show that two sets of parameters may lead to the same BLEU in training, but greatly different 

performance in test. Since MERT does not discriminate this case and, as an approximation 

algorithm, can not find the global optimal solution, we conjecture empirically that training 

towards better objectives using a stable model, like CRF, may lead to better results. We also 

guess it is one of reasons for  Blunsom (Blunsom et al., 2008) to get a success by selecting 

reachable reference translations exclusively. Moreover, MERT is very time-consuming 

because it iterates for several rounds, in each round the decoder is called to decode all the 

sentences. 

The biggest barrier for a probabilistic model to be used here is there are no determined 

and unique objective hypotheses like other NLP tasks, like parsing, POS tagging. The 

language model feature is also a challenge for exact inference in the probabilistic models. 

Our following subsections address these problems. 

3.1 Partial Reference Translation 

We enumerate all the configurations of a confusion network to match the n-gram in reference 

translations. The partial confusion network, including the optimal fragments of reference 

translations, is kept for training, and the remnant are thrown away. Note that, there are 

usually four reference translations for each source sentence, while our model merely choose 

as the training goal one optimal fragments of them. 

Since any variable Yi might take a value ε, it is important to decide whether our model 

should encourage to generate more ε or less in partial references. There are several alternative 

rules. 

1) Treating ε with others value with no difference, find the longest fragments. 

2) Make fragments as longer as possible, requiring no ε in two ends. 

3) Considering the second rule preferentially, then permit as many as possible ε in two 

ends. 

Table 2 describe three examples respective to above rules. Suppose both “a b” and “a b c” are 

part of reference translations. 

 

h1 ε ε a b ε ε ε ε ε 

h2   a b ε c    

h3  ε a c ε c ε ε  

 

Table 2. Three valid hypotheses on a confusion network, one of them is expected as our 

training objective. 
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3.2 Feature Decomposition 

Let Nj be the length of a confusion network, Ns be the number of candidate translation 

systems, a full hypothesis is defined as Y = y1..yN . We define a lower case letter y as a taken 

value of a special variable in Y. 

Any feature  f  worked on Y could be decomposed into the summation of sub-features  f
i
(Y) 

on i-th variable (or position). 

word posterior probability 

One value yi, namely one edge, may include a word w coming from different candidate 

translation systems. We assign an extra attribute to denote the word represented by value yi  

from sys-th system as yi = {yi
sys

}.. 

We define Ns features of word posterior probability as f1..fNs, and their corresponding 

weights as λ1.. λNs, each of which could be computed as 
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The fsys(yi
sys

) is equivalent to word posterior probability p(w|sys, i) mentioned in the 

background section. 

Language Model 

Take a string Y = s0 s1 s2  for example, suppose the language model order is 2, and there exist 

no value ε, then the expected feature score is as follows. 
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Then the feature fired on Yi  is defined as 
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Where P(yi| ..yi-1) means taking enough context to compute language model score, where at 

most mc  windows including current position are considered. 

Obviously, to ensure the accuracy of language model score, the language model order ml 

is required no smaller than mc, and in computing P(yi|..yi-1) there should be efficient context. 

One trick is enlarging the mc.. 

Penalty for Loss of Language Model 

Plenty of value ε would lead to errors in computing LM.  Suppose  Y = a0  ε b2  c3  ε ε d6, the 

language model order ml=4, the windows size mc=4. There are no losses for a0, b2, and c3, but 

d6. On 6-th position, only c3  can be available in mc windows respective to d6, with b2 being 

out of the scope, thus the real score log(d6| a0  b2  c3) would be lost. 

Since larger the mc is, more computing is required. We simply add a penalty feature to 

supplement the losses.  
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word number and ε number 

Let  fwc be the word count, namely none-ε value for any yi, we have definition as follows. 
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And let  fnc denote the count of ε, then   
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4 Related Work 

Liang (Liang et al., 2006) used a perceptron-style discriminative approach to machine 

translation. Liang tried different training objective, local update and global update. The latter 

also face the problem of being unreachable for the reference translations. A large number of 

n-gram features contributes to final translation in his work, while we only use basic feature 

set. 

Blunsom (Blunsom et al., 2008) utilized a tree-like CRF to challenge MERT framework. 

His work is demanding in data scale, reachable reference translations. 

5 Evaluation 

The candidate systems participating in the system combination are as listed in Table 3: 

System A is a BTG-based system using a MaxEnt-based reordering model; System B is a 

hierarchical phrase-based system; System C is a Moses decoder; System D is a syntax-based 

system. 10-best hypotheses from each candidate system on the development and test sets are 

collected as the input of the system combination. 

Two different data sets are used in the experiments. The first is to use NIST MT02 

Chinese-to-English as the development set, and to use NIST MT05 for a test. The second is to 

use news portion in NIST MT06 Chinese-to-English as development set, and to use news 

portion in NIST MT06 Chinese-to-English as development set, and to use news portion in 

NIST MT2008 as a test. A 4-gram language model trained on Xinhua portion of Gigaword 

corpus are used. On two data sets, we used five baselines (four uni-confusion network based 

and one multi-confusion network based) ,all re-implemented following (Rosti et al., 2007a 

2007b), and be measured with case-sensitive NIST BLEU score.  

In our trials, the second rule of selecting partial reference translation brings a bit of better 

and consistent results over other two, so our following comparisons are under this 

configuration. 
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5.1 Comparisons with MERT-based Decoding 

Our comparisons consist of two parts, uni-confusion network based and multi-confusion 

network based system combination. In the first part, we choose skeleton from different 

candidate systems to construct uni-confusion network in turn, on which four baseline 

systems are trained, named as BA,B,C,D respectively. By contrast, four CRF-based systems are 

named as CA,B,C,D. In the second part, baseline Bmul is a multi-confusion network based 

system, and our final system Cmul is to simply feed Bmul  with four n-best lists from CA,B,C,D 

systems to complete a new system combination.  

In the first data set, Table 3, three CRF-based systems outperform respective baseline 

systems significantly, and one is a bit worse than BA. Especially, the MERT-based BB does 

not obtain a consistent result, while CRF-based CB does. Our final system Cmul overpass a 

classic multi-confusion network based baseline system by 0.63 points. Note CA,B,C,D only 

utilize the partial training data instead of the full development set, thus we do not compare the 

BLEU with baselines in MT02. 

 

SYSTEM MT02(dev,%) MT05(test,%) 

A 31.85 30.25 

B 32.16 32.07 

C 32.11 31.71 

D 33.37 31.26 

BA/CA 34.69/- 33.45/33.36 

BB/CB 34.57/- 33.19/33.68+ 

BC/CC 30.85/- 29.17/32.82++ 

BD/CD 34.00/- 32.34/33.26++ 

Bmul/Cmul 35.48/36.25 34.04/34.67+ 

Table 3.  Experiments on MT02 and MT05. all B* are baseline systems, and C* are our 

CRF-based systems. ++significance at 0.01 level, and +significance at 0.05 level. 

 

In the second data set, Table 4, our CRF-based decoder don’t go beyond the most results 

compared to baselines, but it delivers the similar performance, and would cost less training 

time shown in the next sub-section.  

Our parameter settings are as follows, the minimal partial references length is 10, window 

size mc = 6. The following content would demonstrate more experiments conducted on the 

first data set. 

 

SYSTEM MT06(news, dev, %) MT08(news, %) 

A 31.83 29.13 

B 31.82 29.55 

C 31.55 27.69 

D 34.41 30.16 

BA/CA 33.98/- 31.70/32.07+ 

BB/CB 33.70/- 31.83/31.52- 

BC/CC 33.60/- 30.02/29.57- 
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BD/CD 34.21/- 31.75/31.43- 

Bmul/Cmul 34.70/34.61 32.25/32.37 

Table 4.  Experiments on news portion of mt06 and mt08. ++significance at 0.01 level, 

and +significance at 0.05 level. 

5.2 Available Partial Reference Translations 

In practice, it would be demanding of requiring reference translation to be reachable in each 

test sentence.  

From Table 5, there are only 12 and 8 out of 878 and 616 sentences for fully matched 

reference translations, which make necessary for using partial reference translations. 

 

 MT02 MT06(news) 

total number 878 616 

fully matched 12 8 

6 602 474 

8 339 311 

10 172 184 

12 69 80 

Table 5.  Available number of partial reference translations with different minimal 

length. 

 

5.3 Effect of Minimum Length of Partial Reference Translations 

We hope to set suitable minimum length for partial reference translations. On one hand, the 

limitation is relaxed enough, so many scrap-like objectives may do harm to the training and 

be a waste of time. On another hand, there would no sufficient data to ensure efficient 

training. Table 6 lists the performances with different limitations. 

 

length A B C D 

4 0.3303 0.3341 0.3259 0.3320 

6 0.3314 0.3330 0.3285 0.3337 

8 0.3310 0.3329 0.3293 0.3341 

10 0.3336 0.3360 0.3282 0.3326 

12 0.3304 0.3365 0.3249 0.3283 

Table 6.  Fluctuation of bleu of crf-based decoding with the different minimal partial 

references length. 

Adjusting the minimum length from 4 to 12, the differences between maximum BLEU 

and minimum BLEU for four single training are 0.33%, 0.35%, 0.44%, 0.58%. We conclude 

this factor does not cause great fluctuation to the translation quality measured by BLEU 

score. In practice, we set a value of 10 in order to get a balance between program efficiency 

and translation quality. 
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5.4 Effect of Penalty for Language Model 

As decomposing language model onto each variable Yi  would causes inaccuracy inevitably if 

there are plenty  of  ε value in Y, thus we try to introduce the penalty feature to supplement the 

losses 

 

length -fplm +fplm(MT05, CA) 

8 0.2913 0.3310 

10 0.2940 0.3336 

12 0.2900 0.3304 

Table 7.  -fplm means using features except -fplm, +fplm is to use full features. We use 

CRF-based system CA as our test tool. 

From Table 7, without the feature fplm, CRF greatly suffers from the losses of language 

model caused by ε values, and this feature would contribute as high as 4% average 

improvements to the final translations in BLEU score. A step further, we conjecture CRF 

model may work better in other applications of machine translation area where language 

model feature can be computed exactly. 

5.5 Effect of Window Size mc 

This parameter causes great influence to the computing of language model feature fplm. As our 

experiments use 4-gram language model, mc is set no smaller than 4. Due the inaccuracy on 

language model score brought by ε, we should consider moderately bigger setting to leverage 

depends on window size of context, mc. Considering more context, there may be more 

accurate in calculating language model, as well as taking more time. We tune this parameter 

to leverage final quality and time for training parameters. 

 

mc BLEU(MT05) time 

baseline 0.3345 1.8h 

4 0.3010 1m 10s 

5 0.3270 2m 23s 

6 0.3336 4m 21s 

7 0.3340 > 20m 

Table 8.  When mc be set no less than 5, our model acquire similar quality, but with less 

time for training. 

6 Details and Conclusion 

We re-implement a CRF code to support real-value features (like language model score), and 

make no modification to CRF itself. Compared to classic applications of CRF with millions 

of features, our application only use several features, those are similar to the baseline 

systems, four system-specified word posterior probabilities, one language model, words 

number, ε number, and a penalty feature for language model. We find taking maximum 

likelihood and pseudo-likelihood as graphical inference principle acquires similar 
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performance in BLEU metric, while the latter behaves better in training speed by several 

folds.  

Machine translation is a special problem in natural language processing area, no clear and 

definite reference goals, very hard to measure the translation quality, quite huge for the 

solution space. As a result, it is not a trivial thing to bring sophisticated machine learning 

models into this area. This paper attempts to solve the objective ambiguity in MERT frame. 

We propose a novel objective, partial reference translation, and cast decoding a confusion 

network as a sequence labeling problem, then borrow classic graphical model CRF to train 

optimal parameters. Our CRF-based systems obtain better or similar translation quality 

compared to MERT based systems in different data sets, and take less time for training 

uni-confusion network based systems. 
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