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Abstract

Syntax-based translation models shouldin
principle be efficient with polynomially-sized
search space, but in practice they are often
embarassingly slow, partly due to the cost
of language model integration. In this paper
we borrow from phrase-based decoding the
idea to generate a translationincrementally
left-to-right, and show that for tree-to-string
models, with a clever encoding of deriva-
tion history, this method runs in average-
case polynomial-time in theory, and linear-
time with beam search in practice (whereas
phrase-based decoding is exponential-time in
theory and quadratic-time in practice). Exper-
iments show that, with comparable translation
quality, our tree-to-string system (in Python)
can run more than 30 times faster than the
phrase-based system Moses (in C++).

1 Introduction

Most efforts in statistical machine translation so far
are variants of either phrase-based or syntax-based
models. From a theoretical point of view, phrase-
based models are neither expressive nor efficient:
they typically allow arbitrary permutations and re-
sort to language models to decide the best order. In
theory, this process can be reduced to the Traveling
Salesman Problem and thus requires an exponential-
time algorithm (Knight, 1999). In practice, the de-
coder has to employ beam search to make it tractable
(Koehn, 2004). However, even beam search runs in
quadratic-time in general (see Sec. 2), unless a small
distortion limit (say,d=5) further restricts the possi-
ble set of reorderings to those local ones by ruling
out any long-distance reorderings that have a “jump”

in theory in practice
phrase-based exponential quadratic
tree-to-string polynomial linear

Table 1: [main result] Time complexity of our incremen-
tal tree-to-string decoding compared with phrase-based.
In practice means “approximate search with beams.”

longer thand. This has been the standard prac-
tice with phrase-based models (Koehn et al., 2007),
which fails to capture important long-distance re-
orderings like SVO-to-SOV.

Syntax-based models, on the other hand, use
syntactic information to restrict reorderings to
a computationally-tractable and linguistically-
motivated subset, for example those generated by
synchronous context-free grammars (Wu, 1997;
Chiang, 2007). In theory the advantage seems quite
obvious: we can now express global reorderings
(like SVO-to-VSO) in polynomial-time (as opposed
to exponential in phrase-based). But unfortunately,
this polynomial complexity is super-linear (being
generally cubic-time or worse), which is slow in
practice. Furthermore, language model integration
becomes more expensive here since the decoder now
has to maintain target-language boundary words at
both ends of a subtranslation (Huang and Chiang,
2007), whereas a phrase-based decoder only needs
to do this at one end since the translation is always
growing left-to-right. As a result, syntax-based
models are often embarassingly slower than their
phrase-based counterparts, preventing them from
becoming widely useful.

Can we combine the merits of both approaches?
While other authors have explored the possibilities
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of enhancing phrase-based decoding with syntax-
aware reordering (Galley and Manning, 2008), we
are more interested in the other direction, i.e., can
syntax-based models learn from phrase-based de-
coding, so that they still model global reordering, but
in an efficient (preferably linear-time) fashion?

Watanabe et al. (2006) is an early attempt in
this direction: they design a phrase-based-style de-
coder for the hierarchical phrase-based model (Chi-
ang, 2007). However, this algorithm even with the
beam search still runs in quadratic-time in prac-
tice. Furthermore, their approach requires grammar
transformation that converts the original grammar
into an equivalent binary-branching Greibach Nor-
mal Form, which is not always feasible in practice.

We take a fresh look on this problem and turn our
focus to one particular syntax-based paradigm, tree-
to-string translation (Liu et al., 2006; Huang et al.,
2006), since this is the simplest and fastest among
syntax-based approaches. We develop an incremen-
tal dynamic programming algorithm and make the
following contributions:

• we show that, unlike previous work, our in-
cremental decoding algorithm runs in average-
casepolynomial-time in theory for tree-to-
string models, and the beam search version runs
in linear-time in practice (see Table 1);

• large-scale experiments on a tree-to-string sys-
tem confirm that, with comparable translation
quality, our incremental decoder (in Python)
can run more than 30 times faster than the
phrase-based system Moses (in C++) (Koehn
et al., 2007);

• furthermore, on the same tree-to-string system,
incremental decoding is slightly faster than the
standard cube pruning method at the same level
of translation quality;

• this is also the first linear-time incremental de-
coder that performs global reordering.

We will first briefly review phrase-based decod-
ing in this section, which inspires our incremental
algorithm in the next section.

2 Background: Phrase-based Decoding

We will use the following running example from
Chinese to English to explain both phrase-based and
syntax-based decoding throughout this paper:

0 Bùsh́ı 1

Bush
yǔ 2

with
Sh̄alóng3

Sharon
jǔx́ıng 4

hold
le
-ed

5 hùıtán 6

meeting

‘Bush held talks with Sharon’

2.1 Basic Dynamic Programming Algorithm

Phrase-based decoders generate partial target-
language outputs in left-to-right order in the form
of hypotheses(Koehn, 2004). Each hypothesis has
a coverage vectorcapturing the source-language
words translated so far, and can be extended into a
longer hypothesis by a phrase-pair translating an un-
covered segment. This process can be formalized as
a deductive system. For example, the following de-
duction step grows a hypothesis by the phrase-pair
〈yǔ Sh̄alóng, with Sharon〉 covering Chinese span
[1-3]:

(• •••6) : (w, “Bush held talks”)

(•••3•••) : (w′, “Bush held talks with Sharon”) (1)

where a• in the coverage vector indicates the source
word at this position is “covered” and wherew and
w′ = w+c+d are the weights of the two hypotheses,
respectively, withc being the cost of the phrase-pair,
and d being thedistortion cost. To computed we
also need to maintain the ending position of the last
phrase (the3 and6 in the coverage vector).

To add a bigram model, we split each−LM item
above into a series of+LM items; each+LM item
has the form(v,a ) wherea is the last word of the
hypothesis. Thus a+LM version of (1) might be:

(• •••6,
talks) : (w, “Bush held talks”)

(•••3•••,
Sharon) : (w′, “Bush held talks with Sharon”)

where the score of the resulting+LM item

w′ = w + c + d− log Plm(with | talk)

now includes acombination costdue to the bigrams
formed when applying the phrase-pair. The com-
plexity of this dynamic programming algorithm for
g-gram decoding isO(2nn2|V |g−1) wheren is the
sentence length and|V | is the English vocabulary
size (Huang and Chiang, 2007).
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Figure 1: Beam search in phrase-based decoding expands
the hypotheses in the current bin (#2) into longer ones.

VP

PP

P

yǔ

x1:NP

VP

VV

jǔx́ıng

AS

le

x2:NP
→ heldx2 with x1

Figure 2: Tree-to-string ruler3 for reordering.

2.2 Beam Search in Practice

To make the exponential algorithm practical, beam
search is the standard approximate search method
(Koehn, 2004). Here we group+LM items into n
bins, with each binBi hosting at mostb items that
cover exactlyi Chinese words (see Figure 1). The
complexity becomesO(n2b) because there are a to-
tal of O(nb) items in all bins, and to expand each
item we need to scan the whole coverage vector,
which costsO(n). This quadratic complexity is still
too slow in practice and we often set a smalldistor-
tion limit of dmax (say, 5) so that no jumps longer
than dmax are allowed. This method reduces the
complexity toO(nbdmax) but fails to capture long-
distance reorderings (Galley and Manning, 2008).

3 Incremental Decoding for Tree-to-String
Translation

We will first briefly review tree-to-string translation
paradigm and then develop an incremental decoding
algorithm for it inspired by phrase-based decoding.

3.1 Tree-to-string Translation

A typical tree-to-string system (Liu et al., 2006;
Huang et al., 2006) performs translation in two
steps: parsing and decoding. A parser first parses the
source language input into a 1-best treeT , and the
decoder then searches for the bestderivation(a se-

(a) Bùsh́ı [yǔ Sh̄alóng]1 [jǔx́ıng le hùıtán ]2

⇓ 1-best parser

(b) IP@ǫ

NP@1

Bùsh́ı

VP@2

PP@2.1

P

yǔ

NP@2.1.2

Sh̄alóng

VP@2.2

VV

jǔx́ıng

AS

le

NP@2.2.3

hùıtán
r1 ⇓

(c) NP@1

Bùsh́ı

VP@2

PP@2.1

P

yǔ

NP@2.1.2

Sh̄alóng

VP@2.2

VV

jǔx́ıng

AS

le

NP@2.2.3

hùıtán

r2 ⇓ r3 ⇓

(d) Bush held NP@2.2.3

hùıtán

with NP@2.1.2

Sh̄alóng

r4 ⇓ r5 ⇓

(e) Bush [held talks]2 [with Sharon]1

Figure 3: An example derivation of tree-to-string trans-
lation (much simplified from Mi et al. (2008)). Shaded
regions denote parts of the tree that matches the rule.

quence of translation steps)d∗ that converts source
treeT into a target-language string.

Figure 3 shows how this process works. The Chi-
nese sentence (a) is first parsed into tree (b), which
will be converted into an English string in 5 steps.
First, at the root node, we apply ruler1 preserving
the top-level word-order

(r1) IP (x1:NP x2:VP)→ x1 x2

which results in two unfinished subtrees, NP@1 and
VP@2 in (c). HereX@η denotes a tree node of la-
bel X at tree addressη (Shieber et al., 1995). (The
root node has addressǫ, and the first child of nodeη
has addressη.1, etc.) Then ruler2 grabs theBùsh́ı
subtree and transliterate it into the English word
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in theory in practice

phrase* O(2nn2 · |V |g−1) O(n2b)

tree-to-str O(nc · |V |4(g−1)) O(ncb2)

this work* O(nk log2(cr) · |V |g−1) O(ncb)

Table 2: Summary of time complexities of various algo-
rithms.b is the beam width,V is the English vocabulary,
and c is the number of translation rules per node. As a
special case, phrase-based decoding with distortion limit
dmax is O(nbdmax). *: incremental decoding algorithms.

“Bush”. Similarly, ruler3 shown in Figure 2 is ap-
plied to the VP subtree, which swaps the two NPs,
yielding the situation in (d). Finally two phrasal
rulesr4 andr5 translate the two remaining NPs and
finish the translation.

In this framework, decoding without language
model (−LM decoding) is simply a linear-time
depth-first search with memoization (Huang et al.,
2006), since a tree ofn words is also of size
O(n) and we visit every node only once. Adding
a language model, however, slows it down signifi-
cantly because we now have to keep track of target-
language boundary words, but unlike the phrase-
based case in Section 2, here we have to remember
both sides the leftmost and the rightmost boundary
words: each node is now split into+LM items like
(η a ⋆ b) whereη is a tree node, anda andb are left
and right English boundary words. For example, a
bigram+LM item for node VP@2 might be

(VP@2 held⋆ Sharon).

This is also the case with other syntax-based models
like Hiero or GHKM: language model integration
overhead is the most significant factor that causes
syntax-based decoding to be slow (Chiang, 2007). In
theory+LM decoding isO(nc|V |4(g−1)), whereV
denotes English vocabulary (Huang, 2007). In prac-
tice we have to resort to beam search again: at each
node we would only allow top-b +LM items. With
beam search, tree-to-string decoding with an inte-
grated language model runs in timeO(ncb2), where
b is the size of the beam at each node, andc is (max-
imum) number of translation rules matched at each
node (Huang, 2007). See Table 2 for a summary.

3.2 Incremental Decoding

Can we borrow the idea of phrase-based decoding,
so that we also grow the hypothesis strictly left-
to-right, and only need to maintain the rightmost
boundary words?

The key intuition is to adapt the coverage-vector
idea from phrase-based decoding to tree-to-string
decoding. Basically, a coverage-vector keeps track
of which Chinese spans have already been translated
and which have not. Similarly, here we might need
a “tree coverage-vector” that indicates which sub-
trees have already been translated and which have
not. But unlike in phrase-based decoding, we can
not simply choose any arbitrary uncovered subtree
for the next step, since rules already dictate which
subtree to visit next. In other words what we need
here is not really a tree coverage vector, but more of
a derivation history.

We develop this intuition into an agenda repre-
sented as a stack. Since tree-to-string decoding is a
top-down depth-first search, we can simulate this re-
cursion with a stack of active rules, i.e., rules that are
not completed yet. For example we can simulate the
derivation in Figure 3 as follows. At the root node
IP@ǫ, we choose ruler1, and push its English-side
to the stack, with variables replaced by matched tree
nodes, herex1 for NP@1 andx2 for VP@2. So we
have the following stack

s = [� NP@1 VP@2],

where the dot� indicates the next symbol to process
in the English word-order. Since node NP@1 is the
first in the English word-order, we expand it first,
and push ruler2 rooted at NP to the stack:

[� NP@1 VP@2 ] [ � Bush].

Since the symbol right after the dot in the top rule is
a word, we immediately grab it, and append it to the
current hypothesis, which results in the new stack

[� NP@1 VP@2 ] [Bush � ].

Now the top rule on the stack has finished (dot is at
the end), so we trigger a “pop” operation which pops
the top rule and advances the dot in the second-to-
top rule, denoting that NP@1 is now completed:

[NP@1
� VP@2].
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stack hypothesis
[<s> � IP@ǫ

</s>] <s>

p [<s> � IP@ǫ
</s>] [ � NP@1 VP@2] <s>

p [<s> � IP@ǫ
</s>] [ � NP@1 VP@2] [ � Bush] <s>

s [<s> � IP@ǫ
</s>] [ � NP@1 VP@2] [Bush � ] <s> Bush

c [<s> � IP@ǫ
</s>] [NP@1

� VP@2] <s> Bush
p [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [ � held NP@2.2.3 with NP@2.1.2] <s> Bush

s [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held � NP@2.2.3 with NP@2.1.2] <s> Bush held
p [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held � NP@2.2.3 with NP@2.1.2] [ � talks] <s> Bush held

s [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held � NP@2.2.3 with NP@2.1.2] [talks � ] <s> Bush held talks
c [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held NP@2.2.3

� with NP@2.1.2] <s> Bush held talks
s [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held NP@2.2.3 with � NP@2.1.2] <s> Bush held talks with

p [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held NP@2.2.3 with � NP@2.1.2] [ � Sharon] <s> Bush held talks with
s [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held NP@2.2.3 with � NP@2.1.2] [Sharon� ] <s> Bush held talks with Sharon

c [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held NP@2.2.3 with NP@2.1.2
� ] <s> Bush held talks with Sharon

c [<s> � IP@ǫ
</s>] [NP@1 VP@2

� ] <s> Bush held talks with Sharon
c [<s> IP@ǫ

� </s>] <s> Bush held talks with Sharon
s [<s> IP@ǫ

</s>� ] <s> Bush held talks with Sharon</s>

Figure 4: Simulation of tree-to-string derivation in Figure 3 in the incremental decoding algorithm. Actions:p, predict;
s, scan;c, complete (see Figure 5).

Item ℓ : 〈s, ρ〉 : w; ℓ: step,s: stack,ρ: hypothesis,w: weight

Equivalence ℓ : 〈s, ρ〉 ∼ ℓ : 〈s′, ρ′〉 iff. s = s′ andlastg−1(ρ) = lastg−1(ρ
′)

Axiom 0 : 〈[<s>g−1
� ǫ </s>], <s>

g−1〉 : 0

Predict
ℓ : 〈... [α � η β], ρ〉 : w

ℓ + |C(r)| : 〈... [α � η β] [� f(η, E(r))], ρ〉 : w + c(r)
match(η, C(r))

Scan
ℓ : 〈... [α � e β], ρ〉 : w

ℓ : 〈... [α e � β], ρe〉 : w − log Pr(e | lastg−1(ρ))

Complete
ℓ : 〈... [α � η β] [γ�], ρ〉 : w

ℓ : 〈... [α η � β], ρ〉 : w

Goal |T | : 〈[<s>g−1 ǫ </s>�], ρ</s>〉 : w

Figure 5: Deductive system for the incremental tree-to-string decoding algorithm. Functionlastg−1(·) returns the
rightmostg − 1 words (forg-gram LM), andmatch(η, C(r)) tests matching of ruler against the subtree rooted at
nodeη. C(r) andE(r) are the Chinese and English sides of ruler, and functionf(η,E(r)) = [xi 7→ η.var(i)]E(r)
replaces each variablexi on the English side of the rule with the descendant nodeη.var(i) underη that matchesxi.
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The next step is to expand VP@2, and we use ruler3

and push its English-side “VP→ heldx2 with x1”
onto the stack, again with variables replaced by
matched nodes:

[NP@1
� VP@2] [ � held NP@2.2.3 with NP@2.1.2]

Note that this is a reordering rule, and the stack al-
ways follows the English word order because we
generate hypothesis incrementally left-to-right. Fig-
ure 4 works out the full example.

We formalize this algorithm in Figure 5. Each
item 〈s, ρ〉 consists of a stacks and a hypothesis
ρ. Similar to phrase-based dynamic programming,
only the lastg−1 words ofρ are part of the signature
for decoding withg-gram LM. Each stack is a list of
dotted rules, i.e., rules with dot positions indicting
progress, in the style of Earley (1970). We call the
last (rightmost) rule on the stack thetop rule, which
is the rule being processed currently. The symbol af-
ter the dot in the top rule is called thenext symbol,
since it is the symbol to expand or process next. De-
pending on the next symbola, we can perform one
of the three actions:

• if a is a nodeη, we perform a Predict action
which expandsη using a ruler that can pattern-
match the subtree rooted atη; we pushr is to
the stack, with the dot at the beginning;

• if a is an English word, we perform a Scan ac-
tion which immediately adds it to the current
hypothesis, advancing the dot by one position;

• if the dot is at the end of the top rule, we
perform a Complete action which simply pops
stack and advance the dot in the new top rule.

3.3 Polynomial Time Complexity

Unlike phrase-based models, we show here
that incremental decoding runs in average-case
polynomial-time for tree-to-string systems.

Lemma 1. For an input sentence ofn words and
its parse tree of depthd, the worst-case complex-
ity of our algorithm isf(n, d) = c(cr)d|V |g−1 =
O((cr)dng−1), assuming relevant English vocabu-
lary |V | = O(n), and where constantsc, r andg are
the maximum number of rules matching each tree
node, the maximum arity of a rule, and the language-
model order, respectively.

Proof. The time complexity depends (in part) on the
number of all possible stacks for a tree of depthd. A
stack is a list of rules covering a path from the root
node to one of the leaf nodes in the following form:

R1

︷ ︸︸ ︷

[... �η1...]

R2

︷ ︸︸ ︷

[... �η2...] ...

Rs

︷ ︸︸ ︷

[... �ηs...],

whereη1 = ǫ is the root node andηs is a leaf node,
with stack depths ≤ d. Each ruleRi(i > 1) ex-
pands nodeηi−1, and thus hasc choices by the defi-
nition of grammar constantc. Furthermore, each rule
in the stack is actually a dotted-rule, i.e., it is associ-
ated with a dot position ranging from 0 tor, wherer
is the arity of the rule (length of English side of the
rule). So the total number of stacks isO((cr)d).

Besides the stack, each state also maintains(g−1)
rightmost words of the hypothesis as the language
model signature, which amounts toO(|V |g−1). So
the total number of states isO((cr)d|V |g−1). Fol-
lowing previous work (Chiang, 2007), we assume
a constant number of English translations for each
foreign word in the input sentence, so|V | = O(n).
And as mentioned above, for each state, there arec
possible expansions, so the overall time complexity
is f(n, d) = c(cr)d|V |g−1 = O((cr)dng−1).

We do average-case analysis below because the
tree depth (height) for a sentence ofn words is a
random variable: in the worst-case it can be linear in
n (degenerated into a linear-chain), but we assume
this adversarial situation does not happen frequently,
and the average tree depth isO(log n).

Theorem 1. Assume for eachn, the depth of a
parse tree ofn words, notateddn, distributes nor-
mally with logarithmic mean and variance, i.e.,
dn ∼ N (µn, σ2

n), whereµn = O(log n) andσ2
n =

O(log n), then the average-case complexity of the
algorithm ish(n) = O(nk log2(cr)+g−1) for constant
k, thus polynomial inn.

Proof. From Lemma 1 and the definition of average-
case complexity, we have

h(n) = Edn∼N (µn,σ2
n
)[f(n, dn)],

whereEx∼D[·] denotes the expectation with respect
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to the random variablex in distributionD.

h(n) = Edn∼N (µn,σ2
n
)[f(n, dn)]

= Edn∼N (µn,σ2
n
)[O((cr)dnng−1)],

= O(ng−1
Edn∼N (µn,σ2

n
)[(cr)

dn ]),

= O(ng−1
Edn∼N (µn,σ2

n
)[exp(dn log(cr))]) (2)

Sincedn ∼ N (µn, σ2
n) is a normal distribution,

dn log(cr) ∼ N (µ′, σ′2) is also a normal distribu-
tion, whereµ′ = µn log(cr) andσ′ = σn log(cr).
Thereforeexp(dn log(cr)) is a log-normal distribu-
tion, and by the property of log-normal distribution,
its expectation isexp (µ′ + σ′2/2). So we have

Edn∼N (µn,σ2/2)[exp(dn log(cr))]

= exp (µ′ + σ′2/2)

= exp (µn log(cr) + σ2
n log2(cr)/2)

= exp (O(log n) log(cr) + O(log n) log2(cr)/2)

= exp (O(log n) log2(cr))

≤ exp (k(log n) log2(cr)), for some constantk

= exp (log nk log2(cr))

= nk log2(cr). (3)

Plug it back to Equation (2), and we have the
average-case complexity

Edn
[f(n, dn)] ≤ O(ng−1nk log2(cr))

= O(nk log2(cr)+g−1). (4)

Sincek, c, r andg are constants, the average-case
complexity is polynomial in sentence lengthn.

The assumptiondn ∼ N (O(log n), O(log n))
will be empirically verified in Section 5.

3.4 Linear-time Beam Search

Though polynomial complexity is a desirable prop-
erty in theory, the degree of the polynomial,
O(log cr) might still be too high in practice, depend-
ing on the translation grammar. To make it linear-
time, we apply the beam search idea from phrase-
based again. And once again, the only question to
decide is the choice of “binning”: how to assign each
item to a particular bin, depending on their progress?

While the number of Chinese words covered is a
natural progress indicator for phrase-based, it does
not work for tree-to-string because, among the three
actions, only scanning grows the hypothesis. The
prediction and completion actions do not make real

progress in terms ofwords, though they do make
progress on thetree. So we devise a novel progress
indicator natural for tree-to-string translation: the
number of tree nodes covered so far. Initially that
number is zero, and in a prediction step which ex-
pands nodeη using ruler, the number increments by
|C(r)|, the size of the Chinese-side treelet ofr. For
example, a prediction step using ruler3 in Figure 2
to expand VP@2 will increase the tree-node count by
|C(r3)| = 6, since there are six tree nodes in that
rule (not counting leaf nodes or variables).

Scanning and completion do not make progress
in this definition since there is no new tree node
covered. In fact, since both of them are determin-
istic operations, they are treated as “closure” op-
erators in the real implementation, which means
that after a prediction, we always do as many scan-
ning/completion steps as possible until the symbol
after the dot is another node, where we have to wait
for the next prediction step.

This method has|T | = O(n) bins where|T | is
the size of the parse tree, and each bin holdsb items.
Each item can expand toc new items, so the overall
complexity of this beam search isO(ncb), which is
linear in sentence length.

4 Related Work

The work of Watanabe et al. (2006) is closest in
spirit to ours: they also design an incremental decod-
ing algorithm, but for the hierarchical phrase-based
system (Chiang, 2007) instead. While we leave de-
tailed comparison and theoretical analysis to a future
work, here we point out some obvious differences:

1. due to the difference in the underlying trans-
lation models, their algorithm runs inO(n2b)
time with beam search in practice while ours
is linear. This is because each prediction step
now hasO(n) choices, since they need to ex-
pand nodes like VP[1, 6] as:

VP[1,6]→ PP[1,i] VP[i, 6],

where the midpointi in general hasO(n)
choices (just like in CKY). In other words, their
grammar constantc becomesO(n).

2. different binning criteria: we use the number of
tree nodes covered, while they stick to the orig-
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inal phrase-based idea of number of Chinese
words translated;

3. as a result, their framework requires gram-
mar transformation into the binary-branching
Greibach Normal Form (which is not always
possible) so that the resulting grammar always
contain at least one Chinese word in each rule
in order for a prediction step to always make
progress. Our framework, by contrast, works
with any grammar.

Besides, there are some other efforts less closely
related to ours. As mentioned in Section 1, while
we focus on enhancing syntax-based decoding with
phrase-based ideas, other authors have explored the
reverse, but also interesting, direction of enhancing
phrase-based decoding with syntax-aware reorder-
ing. For example Galley and Manning (2008) pro-
pose a shift-reduce style method to allow hiearar-
chical non-local reorderings in a phrase-based de-
coder. While this approach is certainly better than
pure phrase-based reordering, it remains quadratic
in run-time with beam search.

Within syntax-based paradigms, cube pruning
(Chiang, 2007; Huang and Chiang, 2007) has be-
come the standard method to speed up+LM de-
coding, which has been shown by many authors to
be highly effective; we will be comparing our incre-
mental decoder with a baseline decoder using cube
pruning in Section 5. It is also important to note
that cube pruning and incremental decoding are not
mutually exclusive, rather, they could potentially be
combined to further speed up decoding. We leave
this point to future work.

Multipass coarse-to-fine decoding is another pop-
ular idea (Venugopal et al., 2007; Zhang and Gildea,
2008; Dyer and Resnik, 2010). In particular, Dyer
and Resnik (2010) uses a two-pass approach, where
their first-pass,−LM decoding is also incremental
and polynomial-time (in the style of Earley (1970)
algorithm), but their second-pass,+LM decoding is
still bottom-up CKY with cube pruning.

5 Experiments

To test the merits of our incremental decoder we
conduct large-scale experiments on a state-of-the-art
tree-to-string system, and compare it with the stan-
dard phrase-based system of Moses. Furturemore we

also compare our incremental decoder with the stan-
dard cube pruning approach on the same tree-to-
string decoder.

5.1 Data and System Preparation

Our training corpus consists of 1.5M sentence pairs
with about 38M/32M words in Chinese/English, re-
spectively. We first word-align them by GIZA++ and
then parse the Chinese sentences using the Berke-
ley parser (Petrov and Klein, 2007), then apply
the GHKM algorithm (Galley et al., 2004) to ex-
tract tree-to-string translation rules. We use SRILM
Toolkit (Stolcke, 2002) to train a trigram language
model with modified Kneser-Ney smoothing on the
target side of training corpus. At decoding time,
we again parse the input sentences into trees, and
convert them into translation forest by rule pattern-
matching (Mi et al., 2008).

We use the newswire portion of 2006 NIST MT
Evaluation test set (616 sentences) as our develop-
ment set and the newswire portion of 2008 NIST
MT Evaluation test set (691 sentences) as our test
set. We evaluate the translation quality using the
BLEU-4 metric, which is calculated by the script
mteval-v13a.pl with its default setting which is case-
insensitive matching ofn-grams. We use the stan-
dard minimum error-rate training (Och, 2003) to
tune the feature weights to maximize the system’s
BLEU score on development set.

We first verify the assumptions we made in Sec-
tion 3.3 in order to prove the theorem that tree depth
(as a random variable) is normally-distributed with
O(log n) mean and variance. Qualitatively, we veri-
fied that for mostn, tree depthd(n) does look like a
normal distribution. Quantitatively, Figure 6 shows
that average tree height correlates extremely well
with 3.5 log n, while tree height variance is bounded
by 5.5 log n.

5.2 Comparison with Cube pruning

We implemented our incremental decoding algo-
rithm in Python, and test its performance on the de-
velopment set. We first compare it with the stan-
dard cube pruning approach (also implemented in
Python) on the same tree-to-string system.1 Fig-

1Our implementation of cube pruning follows (Chiang,
2007; Huang and Chiang, 2007) where besides a beam sizeb

of unique+LM items, there is also a hard limit (of 1000) on the
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the variance is bounded by5.5 log n.

ure 7(a) is a scatter plot of decoding times versus
sentence length (using beamb = 50 for both sys-
tems), where we confirm that our incremental de-
coder scales linearly, while cube pruning has a slight
tendency of superlinearity. Figure 7(b) is a side-by-
side comparison of decoding speed versus transla-
tion quality (in BLEU scores), using various beam
sizes for both systems (b=10–70 for cube pruning,
andb=10–110 for incremental). We can see that in-
cremental decoding is slightly faster than cube prun-
ing at the same levels of translation quality, and the
difference is more pronounced at smaller beams: for

number of (non-unique) pops from priority queues.
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Figure 8: Comparison of our incremental tree-to-string
decoder with Moses in terms of speed. Moses is shown
with various distortion limits (0, 6, 10,+∞; optimal: 10).

example, at the lowest levels of translation quality
(BLEU scores around 29.5), incremental decoding
takes only 0.12 seconds, which is about 4 times as
fast as cube pruning. We stress again that cube prun-
ing and incremental decoding are not mutually ex-
clusive, and rather they could potentially be com-
bined to further speed up decoding.

5.3 Comparison with Moses

We also compare with the standard phrase-based
system of Moses (Koehn et al., 2007), with stan-
dard settings except for the ttable limit, which we set
to 100. Figure 8 compares our incremental decoder
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system/decoder BLEU time
Moses (optimaldmax=10) 29.41 10.8

tree-to-str: cube pruning (b=10) 29.51 0.65
tree-to-str: cube pruning (b=20) 29.96 0.96
tree-to-str: incremental (b=10) 29.54 0.32
tree-to-str: incremental (b=50) 29.96 0.77

Table 3: Final BLEU score and speed results on the test
data (691 sentences), compared with Moses and cube
pruning. Time is in seconds per sentence, including pars-
ing time (0.21s) for the two tree-to-string decoders.

with Moses at various distortion limits (dmax=0, 6,
10, and+∞). Consistent with the theoretical anal-
ysis in Section 2, Moses with no distortion limit
(dmax = +∞) scalequadratically, and monotone
decoding (dmax = 0) scale linearly. We use MERT
to tune the best weights for each distortion limit, and
dmax = 10 performs the best on our dev set.

Table 3 reports the final results in terms of BLEU
score and speed on the test set. Our linear-time
incremental decoder with the small beam of size
b = 10 achieves a BLEU score of 29.54, compara-
ble to Moses with the optimal distortion limit of 10
(BLEU score 29.41). But our decoding (including
source-language parsing) only takes 0.32 seconds a
sentences, which is more than 30 times faster than
Moses. With a larger beam ofb = 50 our BLEU
score increases to 29.96, which is a half BLEU point
better than Moses, but still about 15 times faster.

6 Conclusion

We have presented an incremental dynamic pro-
gramming algorithm for tree-to-string translation
which resembles phrase-based based decoding. This
algorithm is the first incremental algorithm that runs
in polynomial-time in theory, and linear-time in
practice with beam search. Large-scale experiments
on a state-of-the-art tree-to-string decoder confirmed
that, with a comparable (or better) translation qual-
ity, it can run more than 30 times faster than the
phrase-based system of Moses, even though ours is
in Python while Moses in C++. We also showed that
it is slightly faster (and scale better) than the popular
cube pruning technique. For future work we would
like to apply this algorithm to forest-based transla-
tion and hierarchical system by pruning the first-pass
−LM forest. We would also combine cube pruning

with our incremental algorithm, and study its perfor-
mance with higher-order language models.
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