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Abstract. The using of attention in neural machine translation (NMT) has greatly
improved translation performance, but NMT models usually calculate attention
vectors independently at different time steps and consequently suffer from over-
translation and under-translation. To mitigate the problem, in this paper we pro-
pose a method to consider the translated source and target information up to now
related to each source word when calculating attentions. The main idea is to keep
track of the translated source and target information assigned to each source word
at each time step and then accumulate these information to get the completion de-
gree for each source word. In this way, in the later calculation of the attention,
the model can adjust the attention weights to give a reasonable final comple-
tion degree for each source word. Experimental results show that our method can
outperform the strong baseline systems significantly both on the Chinese-English
and English-German translation tasks and produce better alignment on the human
aligned data set.

Keywords: Neural Machine Translation - Bilingual History Information - Atten-
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1 Introduction

Neural machine translation (NMT) [1-3, 12, 15] has made great progress and drawn
much attention recently. NMT models mainly fit in the attention-based encoder-decoder
framework where the encoder encodes the source sentence into representations in a
common semantic space and at each time step the decoder first collects source informa-
tion over all the source words via an attention function and then generates a target word
based on the collected source information.

Although there may exist different attention functions, including additive attention
and dot-product attention [15], the main mechanism is almost the same which first
gets the weight for each source representation according to its relevance to the current
target-side information and then outputs the weighted sum of source representations
as the source information for each time step to translate. From this process, we can see
that the calculation of the attention at each time step is only related to the current target-
side information and the keys (usually the representations of source words). It does not
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involve the previous attention directly and hence is independent to each other at differ-
ent time steps. As a result, the attention component cannot get to know the completion
degree of each source word which leads to over-translation or under-translation [13].
Table 1 gives examples of over-translation and under-translation. Example (1) shows
the case of over-translation where “23” has been translated twice. If the model can get
the translation derived from “23”, it may not attend too much on it when calculating
attention. Example (2) indicates the case of under-translation where the source words
“S zhdunidn” have not been translated. Once the model can get the translated part of *“5
zhdunian”, it will adjust to give more attention to it. As a conclusion, if the model can
maintain the translated source and target translation up to now related to each source
word, it can work out more reasonable attention. On these grounds, in order to address

(1)|Src  |rénlei gongyou 23 dui ranseti
Trans|There were 23 23 pairs of chromosomes in human beings

(2)[Src  |qing xianggang huigui 5 zhounian gongwuyudn shihua dasai jiang juxing
Trans|Chinese civil service calligraphy competition to be held on Hong Kong’s return
Table 1. Two examples of Chinese-to-English NMT.

the problem of over-translation and under-translation, we propose a method to involve
the bilingual history information into the calculation of attention. The main idea is to
gather the translated source and target information for each source word at each time
step, and then accumulate the translated bilingual history up to now related to each
source word with GRUs. In this way, we can evaluate the completion degree for each
source word and give reasonable suggestion for the calculation of attention. Experi-
ments on the Chinese-to-English and English-to-German translation tasks show that
our method can achieve significantly improvements over strong baselines and can also
produce better alignment.

2 Background

Our work is initially based on the representative attention-based NMT model[1]. The
basic framework is a mature end-to-end system following the encoder-decoder frame-
work whose encoder consists of a RNN or bi-directional RNN to generate the repre-
sentations of the source sentence as a sequence of vectors. The framework employed
another RNN network as decoder to learn to align and translate by reading the vectors
at the same time. In particular, the framework above possesses an extra attention mod-
ule which is a mechanism for improving alignment. We’ll explain the model and its
sub-components in detail in the following section.

Encoder The encoder employs two GRUs to run through the source words bi-
directionally and obtain two sequences of hidden states as follows:

;= GRU (1, 1 1) (1)
b = GRU (2, 0,11) @)

The formal representation of each word in the source sequence is the given by concate-
nating the corresponding hidden states in both direction, which is shown by Eq.3:
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by = [B; b 3)

Attention The design of attention section is inspired by the intuition that corre-
sponding pair of source-end word and target-end word can be highly connected when
generating a new word. Thus, the module aims at building direct connections between
those highly related source and target words.

Above all, we need to compute the relevance between target word y ; and h;, which
can be evaluated as

eji = v tanh (W,s,_1 + U,h;) 4)

For computational convenience, we will use following formula to normalize the rele-
vance of h; in the source hidden state sequence in j-th decoding step:

exXp (€j;
aj; = lsp# 5)
Zj":l exp (ej1i)

Finally, the attention can be compute as weighted summation of all source hidden states
by their normalized relevance obtained in the previous step

ls
a; = lel ajih; (6)

where [, is the length of source inputs. Decoder The decoder works by predicting a
probability distribution over all the words within the vocabulary and output the target
word with the greatest probability. It also use a variant of GRU network to roll the target
information, the details of which are described in [1]. Then the current target hidden
state s; is given by

si=f(yi1,8i-1,) (M
The probability distribution D; over the target vocabulary at the ¢-th step depends on

the combinational effect of previous ground truth word, the attention a; and the rolled
target information s;, the relationship can be described mathematically as

ti =g(yi_1,2i,8:) ®)
0; = Wot; ©)
D, = softmax (0;) (10)

where g represents a linear transformation, t; can be mapped to o; by W, so that each
target word has only one corresponding dimension in o;.

Intuitively, the probability o;; and the variable e;; jointly reflect the influence of h;
in deciding next hidden state and even generating next target word.

3 The Proposed Method

The attention component collects source information at each time step by weightedly
summing the semantic of all the source words and then the decoder produces a target
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word according to the generated attention. In this process, there is a semantic projec-
tion between the source attention and the target information. It implies that the seman-
tics held by the source attention and the generated target word is equivalent. Thus we
can derive the consumed source semantic and the generated target semantic related to
each source word at each step. With this, we can get the accumulated consumed source
semantic and generated target semantic up to each time step. The bilingual history se-
mantic can well indicate completion degree of each source word and hence help to
generate more reasonable attention.

GRU GRU

7%
Y 7i—1
j+1,ilV5+1 h]+1

3
Si+1

115, i1

Fig. 1. The architecture of our method with bilingual history involved attention.

Figure 1 gives the architecture of our method. After the target word y is generated
Ys, the source information related to the source word x; is accumulated via a GRU to be

l~1;-, and similarly the target information related to the source word z; is accumulated to
é; Then to generate the next target word ;4 1, the accumulated bilingual information is
involved to calculated the attention weight of x; and the weighted sum over the source
hidden states is treated as the attention and fed to the decoder.

In this paper, we attempt to add different part of information as

* SA-NMT: Only involve the source information up to now in the calculation of
attention;

* TA-NMT: Only involve the target information up to now in the calculation of at-
tention;
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* BA-NMT: Involve both the source and target information up to now in the calcula-
tion of attention.

3.1 Source History Involved Attention

At the ¢-th time step, assume the source information related to the source word x; is
~f—

1 . . .
h; . To generate the target word y;, we calculate the attention with source history

information involved and get
eji = vT tanh (Wasi_1 +U,h; + Vhf,;'fl) (11)

Then we can get the attention following Equation 5 and 6.
According to the attention wight a; to the source word x;, we can think at the ¢-th
time step , the quantity of the translated source information related to x; is

I]Sl = Qi * hj (12)

But we cannot accumulate the source information related to the source word directly by
adding them, as at each time step the translated information is not normalized against
the source word. Here we employ a GRU to accumulate it, hoping the learnable update
gate and reset gate can perform normalization dynamically. Based on the source infor-
mation up to the ¢ — 1-th time step, we can update to get the source information up to
the i-th time step related to the word x; as

hi = GRU(Ij,,hi™") (13)
We initialize fl[; with 0, which means that no source words have been translated yet. Be-
sides, the accumulated source information also attention the calculation of logit shown
in Equation 8. Before fed to logit, a weighted sum with the attention weights is per-
formed over the history source information related to each source word as

Fiel il
h* " = E aﬂ*hj
J

ti = g(yi_1,a;,8;,h" 1)

(14)

3.2 Target History Involved Attention

When calculating the attention, it can be considered that the source-side information
contained in the current attention is equal to the information of the current generated
target word. So each source word corresponds to the current target information:

I;‘-FZ- = ojj ¥ Si—1 (15)

Then again, I;‘C is not normalized for the source words, and we still need GRU to accu-
mulate it: _ ‘
§h = GRU(I];,8:7") (16)

1797
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where é; denotes historical information accumulated by the target end. We also take
these historical target information into account when calculating attention, so we rewrite
the attention model Eq.(4) as follows:

eji = Vo tanh (Wgs;_1 + Ugh; + V,8771) (17)

Note that 53 measures the relevance between the translated historical information of

target-end and the corresponding j-th source hidden state. Then, we rewrite the t; in

Eq.(8) as follows:
éi_l = Z aji * §§_1
J

t; = g(yi—1, ;8,8 1)

(18)

3.3 Bilingual History Involved Attention

Fig.1 illustrates concatenation pattern of the bilingual history involved attention mech-
anism. The bilingual historical information is the amount of information that has been
translated for each source word and the amount of information that has been translated
for the target when calculating attention. Intuitively, we combine the bilingual history
together by rewriting the attention model. Thus we have

eji = v tanh(W,s;_1 + U,h,+ (19)
Vihi T+ Vs

4 Related Work

Attention in neural machine translation[1, 7] is an imperative mechanism to improve
the effect of an Encoder + Decoder model based on RNN, which is designed to assign
weights to different inputs. Now some new models [13]are proposed to improve the
performance of attention mechanism. Some of them[13] integrate the previous attention
history into the current attention for better alignment.

Self-attention is another popular mechanism in recent studies. Look-ahead atten-
tion proposed by [17] are able to model dependency relationship between distant tar-
get words. The model extends the mechanism by referring to previous generated target
words, while by and large, previous works focus on learning to align with source words.
[5] further presented a variational self-attention mechanism extracts different aspects of
the sentence and partition them into multiple vector representations.

Exploiting historical information to improve the performance of Attention is also
a novel mechanism. [8] proposed to introduce source-end historical information onto
attention, which use interactive attention to rewrite the source information during trans-
lation. Interactive attention to keep tracking the source history by reading and writing
operations. [16] proposed to introduce target-end historical information onto attention,
which focuses on integrating the decoding history. However, the utilization of histori-
cal information basically limited to either source-end or target-end by then, our work
managed to combine bilingual history together.
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5.1 Data Preparation

We mainly evaluated our approach on the widely used NIST Chinese-English trans-
lation task. In addition, to show the usefulness of our approach, we also provided the
results of the English-German translation task. So we carried out experiments on two
datasets:

NIST Zh—En: Our training data for the Chinese-English training task consists of

Systems ||[MT03|MT04 |[MT05 |[MT06 |Average

RNNsearch 35.75 |38.68 [34.69 |37.61 |36.68
RNNsearch* 42.03 |44.58 |42.33 [42.40 (42.84

NN-Coverage 42.69 |44.92 |42.74 (4279 |43.29

IA-Model 4283 (4514 [42.94 |43.12 [4351
Transformer-base|(44.56 [45.81 [44.12 (4331 |44.45
BA-NMT |[43.73%[45.777* 43587 [43.91" [44.25 +1.41

Table 2. Performance comparison on Zh—En translation. The “}” indicates statistically signifi-
cant improvement over RNNsearch*. “x” means statistically significant improvement over NN-
Coverage and IA-Model. Here p < 0.05 [14].

1.25M sentence pairs®. We chose the NIST 2002 test set as our development set, and
the NIST 2003, 2004, 2005, 2006 datasets as the test sets.

WMT14 En—De: Our training data for the English-German training task consists
of 4.45M sentence pairs. We use newstest2013 as the valid set, and newstest2014 as the
test set.

In our experiments, we used the case-insensitive 4-gram BLEU[10] for Zh—En
and case-sensitive for En—De to evaluate the translation performance.

5.2 Systems

We involved following systems as below:

RNNsearch We implemented the conventional attention-based Neural Machine Trans-
lation of [1] with PyTorch 4.

RNNsearch* This is an improved system of RNNsearch, the detail we can see in
this link>.

NN-Coverage A variants of attention-based NMT model [13] which maintain a
soft coverage on each source representation to keep track of the history to improve the
attention mechanism.

IA-Model An improved NMT model which can capture translation status with an
interactive attention to track attention history.

3 These sentence pairs are mainly extracted from LDC2002E18, LDC2003E07, LDC2003E14,
Hansards portion of LDC2004T07, LDC2004T08 and LDC2005T06

“http://pytorch.org

>https://github.com/nyu-dl/dl4mt-tutorial
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5.3 Configuration

For the NIST Zh—En data set, we adopted 16k byte pair encoding (BPE) merging
operations [11] in the source and target end, respectively. The length of the sentences
was limited up to 128 tokens on both ends. For WMT En—De, the number of merge
operations in BPE is set to 32K for both source and target languages, and the maximum
length of sentences in the En—De task is also set to 128.

We deployed shared configuration for all the systems. All the embedding sizes were
both set to 512, the size of all hidden units in encoder and decoder RNNs was also set to
512, and all parameters were initialized by using uniform distribution over [—0.1,0.1].
The mini-batch stochastic gradient descent (SGD) algorithm was employed. We batch
sentence pairs according to the approximate length, and limit input and output tokens
to 4096. In addition, the learning rate was adjusted by adam optimizer [4](51 = 0.9,
B2 = 0.999, and € = 1e~%). Dropout was applied on the output layer with dropout rate
of 0.2. The beam size was set to 10.

5.4 Ablation Study

Systems ‘ ‘ Zh—En

RNNsearch 36.68
RNNsearch*|| 42.84
+ SA-NMT || 43.52
+ TA-NMT 43.83

+BA-NMT || 44.25
Table 3. Ablation study with average BLEU scores.

Systems ‘ ‘En—>De
RNNsearch™|| 25.76
+ SA-NMT 26.11
+ TA-NMT || 26.32

+BA-NMT || 26.58
Table 4. Performance comparison on En—De translation.

We employed several methods to improve the performance of our model. For in-
stance, we keep track of source history and put it into attention model, which settles the
problem of missing translation to a certain extent. Furthermore, we model the depen-
dency relationship between the previous generated target words and the source words
where each pair of source word and generated target word is one-to-one correspon-
dence.

The translation performance is listed in Table 3 measuring in BLEU score. It is ob-
vious that in all the cases, our proposed history involved attention model outperforms
RNNsearch* system. Specifically, we obtained a BLEU score of 43.52 when only em-
ploying the Source History Involved Attention, which indicated that feeding predicted
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words as context can sufficiently mitigate exposure bias. In comparison, we improved
RNNsearch* by 0.68 BLEU points, which also proves its effectiveness. Likewise, we
are also gratified by the result of only applying Target History Involved Attention, which
achieved a comparable BLEU score as Source History Involved Attention, we improved
RNNsearch* by 0.99 BLEU points. Eventually, we managed to combine the above two
attention mechanism together and expect to get a more remarkable improvement.

On the En-De dataset, as shown in Table 4, BA-NMT shows superiority on test
dataset, and achieves the gains of 0.8 BLEU points over RNNsearch* system. Given
the above results, we can conclude that BA-NMT can indeed better utilize the historical
information and bring improvement on the translation performance.

5.5 Alignment Quality

As the results of BLEU scores have proved that our method can achieve more accurate
translation, we then try to verify this conclusion from another perspective. Since there is
a common belief that the better translation should have better alignment with the source
sentence, intuitively, we try to evaluated the quality of the alignments derived from the
attention module of NMT using AER [9]. As for dataset, we consider the human aligned
dataset from [6], containing 900 Chinese-English sentence pairs, to evaluate alignment
quality in our experiment.

In practice, we adopted the method that retain the alignment link with the highest
probability in Eq.(5). As a comparison, we report the results of both the baseline system
and our system. Measured by BLEU score, the results shown in Table 5 illustrate that
our system BA-NMT is able to produce more accurate translation than the RNNsearch*.
Meanwhile, our corresponding AER score is lower, suggesting better alignments.

SYSTEMS | BLEU|AER
RNNsearch* || 42.84 [44.03

BA-NMT 44.25 |42.16
Table 5. Comparison of alignment quality on Zh—En translation task, the BLEU and AER scores
are evaluated on different test sets.

6 Conclusion

In this work, we demonstrate a novel Bilingual History Involved Attention for the
attention-based NMT. Our core innovation is that our model allows to maintain track of
both the target history and the source history, which is beneficial for our model to bet-
ter utilize the historical information and generate more accurate translation. We further
explore the application of our model on NMT tasks and conduct experiments by using
three strategies to integrate the historical information into NMT. Results of empirical
studies are consistent with our expectation, which proves that our Bilingual History In-
volved Attention model is capable of achieving better alignment quality than baseline
model, especially in the complicated cases. Besides, the proposed model could effec-
tively alleviated the problem of over-translation and under-translation.
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